• Title/Summary/Keyword: Robust tracking

Search Result 996, Processing Time 0.029 seconds

Active Fusion Model with Robustness against Partial Occlusions (부분적 폐색에 강건한 활동적 퓨전 모델)

  • Lee Joong-Jae;Lee Geun-Soo;Kim Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.35-46
    • /
    • 2006
  • The dynamic change of background and moving objects is an important factor which causes the problem of occlusion in tracking moving objects. The tracking accuracy is also remarkably decreased in the presence of occlusion. We therefore propose an active fusion model which is robust against partial occlusions that are occurred by background and other objects. The active fusion model is consisted of contour-based md region-based snake. The former is a conventional snake model using contour features of a moving object and the latter is a regional snake model which considers region features inside its boundary. First, this model classifies total occlusion into contour and region occlusion. And then it adjusts the confidence of each model based on calculating the location and amount of occlusion, so it can overcome the problem of occlusion. Experimental results show that the proposed method can successfully track a moving object but the previous methods fail to track it under partial occlusion.

Phase Control Loop Design based on Second Order PLL Loop Filter for Solid Type High Q-factor Resonant Gyroscope (고체형 정밀 공진 자이로스코프를 위한 이차 PLL 루프필터 기반 위상제어루프 설계)

  • Park, Sang-Jun;Yong, Ki-Ryeok;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.546-554
    • /
    • 2012
  • This paper suggests a design method of an improved phase control loop for tracking resonant frequency of solid type precision resonant gyroscope. In general, a low cost MEMS gyroscope adapts the automatic gain control loops by taking a velocity feedback configuration. This control technique for controlling the resonance amplitude shows a stable performance. But in terms of resonant frequency tracking, this technique shows an unreliable performance due to phase errors because the AGC method cannot provide an active phase control capability. For the resonance control loop design of a solid type precision resonant gyroscope, this paper presents a phase domain control loop based on linear PLL (Phase Locked Loop). In particular, phase control loop is exploited using a higher order PLL loop filter by extending the first order active PI (Proportion-Integral) filter. For the verification of the proposed loop design, a hemispherical resonant gyroscope is considered. Numerical simulation result demonstrates that the control loop shows a robust performance against initial resonant frequency gap between resonator and voltage control oscillator. Also it is verified that the designed loop achieves a stable oscillation even under the initial frequency gap condition of about 25 Hz, which amounts to about 1% of the natural frequency of a conventional resonant gyroscope.

A Study on Auto Inspection System of Cross Coil Movement Using Machine Vision (머신비젼을 이용한 Cross Coil Movement 자동검사 시스템에 관한 연구)

  • Lee, Chul-Hun;Seol, Sung-Wook;Joo, Jae-Heum;Lee, Sang-Chan;Nam, Ki-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.79-88
    • /
    • 1999
  • In this paper we address the tracking method which tracks only target object in image sequence including moving object. We use a contour tracking algorithm based on intensity and motion boundaries. The motion of the moving object contour in the image is assumed to be well describable by an affine motion model with a translation, a change in scale and a rotation. The moving object contour is represented by B-spline, the position and motion of which is estimated along the image sequence. we use pattern recognition to identify target object. In order to use linear Kalman Filters we decompose the estimation process into two filters. One is estimating the affine motion parameters and the other the shape of moving object contour. In some experiments with dial plate we show that this method enables us to obtain the robust motion estimates and tracking trajectories even in case of including obstructive object.

  • PDF

A Real Time Lane Detection Algorithm Using LRF for Autonomous Navigation of a Mobile Robot (LRF 를 이용한 이동로봇의 실시간 차선 인식 및 자율주행)

  • Kim, Hyun Woo;Hawng, Yo-Seup;Kim, Yun-Ki;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1029-1035
    • /
    • 2013
  • This paper proposes a real time lane detection algorithm using LRF (Laser Range Finder) for autonomous navigation of a mobile robot. There are many technologies for safety of the vehicles such as airbags, ABS, EPS etc. The real time lane detection is a fundamental requirement for an automobile system that utilizes outside information of automobiles. Representative methods of lane recognition are vision-based and LRF-based systems. By the vision-based system, recognition of environment for three dimensional space becomes excellent only in good conditions for capturing images. However there are so many unexpected barriers such as bad illumination, occlusions, and vibrations that the vision cannot be used for satisfying the fundamental requirement. In this paper, we introduce a three dimensional lane detection algorithm using LRF, which is very robust against the illumination. For the three dimensional lane detections, the laser reflection difference between the asphalt and lane according to the color and distance has been utilized with the extraction of feature points. Also a stable tracking algorithm is introduced empirically in this research. The performance of the proposed algorithm of lane detection and tracking has been verified through the real experiments.

Robust Object Tracking for Scale Changes (스케일에 강건한 물체 추적 기법)

  • Cheon, Gi-Hong;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.194-203
    • /
    • 2008
  • Though conventional video surveillance systems such as CCTV depended on operators, recently developed intelligent surveillance systems no longer needed operators. However, these new intelligent surveillance systems have their own problems such as Occlusion, changing scale of target object, and affine. This paper handled information damage caused by changing the scale of the target object among other objects. Due to the change of the scale, the inaccurate information of target can be obtained when we update the background information. To handle this problem, we introduce a solution for information damage caused by problem of changing scale of target object located among other objects. Specifically, we suggest multi-stage sampling particle filter based advanced MSER for object tracking system. Through this method, the problem caused by changing scale of target can be avoided.

Adaptive Model-based Multi-object Tracking Robust to Illumination Changes and Overlapping (조명변화와 곁침에 강건한 적응적 모델 기반 다중객체 추적)

  • Lee Kyoung-Mi;Lee Youn-Mi
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.449-460
    • /
    • 2005
  • This paper proposes a method to track persons robustly in illumination changes and partial occlusions in color video frames acquired from a fixed camera. To solve a problem of changing appearance by illumination change, a time-independent intrinsic image is used to remove noises in an frame and is adaptively updated frame-by-frame. We use a hierarchical human model including body color information in order to track persons in occlusion. The tracked human model is recorded into a persons' list for some duration after the corresponding person's exit and is recovered from the list after her reentering. The proposed method was experimented in several indoor and outdoor scenario. This demonstrated the potential effectiveness of an adaptive model-base method that corrected distorted person's color information by lighting changes, and succeeded tracking of persons which was overlapped in a frame.

Occluded Object Motion Tracking Method based on Combination of 3D Reconstruction and Optical Flow Estimation (3차원 재구성과 추정된 옵티컬 플로우 기반 가려진 객체 움직임 추적방법)

  • Park, Jun-Heong;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.537-542
    • /
    • 2011
  • A mirror neuron is a neuron fires both when an animal acts and when the animal observes the same action performed by another. We propose a method of 3D reconstruction for occluded object motion tracking like Mirror Neuron System to fire in hidden condition. For modeling system that intention recognition through fire effect like Mirror Neuron System, we calculate depth information using stereo image from a stereo camera and reconstruct three dimension data. Movement direction of object is estimated by optical flow with three-dimensional image data created by three dimension reconstruction. For three dimension reconstruction that enables tracing occluded part, first, picture data was get by stereo camera. Result of optical flow is made be robust to noise by the kalman filter estimation algorithm. Image data is saved as history from reconstructed three dimension image through motion tracking of object. When whole or some part of object is disappeared form stereo camera by other objects, it is restored to bring image date form history of saved past image and track motion of object.

Face Tracking Combining Active Contour Model and Color-Based Particle Filter (능동적 윤곽 모델과 색상 기반 파티클 필터를 결합한 얼굴 추적)

  • Kim, Jin-Yul;Jeong, Jae-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2090-2101
    • /
    • 2015
  • We propose a robust tracking method that combines the merits of ACM(active contour model) and the color-based PF(particle filter), effectively. In the proposed method, PF and ACM track the color distribution and the contour of the target, respectively, and Decision part merges the estimate results from the two trackers to determine the position and scale of the target and to update the target model. By controlling the internal energy of ACM based on the estimate of the position and scale from PF tracker, we can prevent the snake pointers from falsely converging to the background clutters. We appled the proposed method to track the head of person in video and have conducted computer experiments to analyze the errors of the estimated position and scale.

Bilateral Filtering-based Mean-Shift for Robust Face Tracking (양방향 필터 기반 Mean-Shift 기법을 이용한 강인한 얼굴추적)

  • Choi, Wan-Yong;Lee, Yoon-Hyung;Jeong, Mun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1319-1324
    • /
    • 2013
  • The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity measure between the color histograms or kernel density estimates of the target and candidate image. However, it is sensitive to the noises due to objects or background having similar color distributions. In addition, occlusion by another object often causes a face region to change in size and position although a face region is a critical clue to perform face recognition or compute face orientation. We assume that depth and color are effective to separate a face from a background and a face from objects, respectively. From the assumption we devised a bilateral filter using color and depth and incorporate it into the mean-shift algorithm. We demonstrated the proposed method by some experiments.

Evaluation of Marker Images based on Analysis of Feature Points for Effective Augmented Reality (효과적인 증강현실 구현을 위한 특징점 분석 기반의 마커영상 평가 방법)

  • Lee, Jin-Young;Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.49-55
    • /
    • 2019
  • This paper presents a marker image evaluation method based on analysis of object distribution in images and classification of images with repetitive patterns for effective marker-based augmented reality (AR) system development. We measure the variance of feature point coordinates to distinguish marker images that are vulnerable to occlusion, since object distribution affects object tracking performance according to partial occlusion in the images. Moreover, we propose a method to classify images suitable for object recognition and tracking based on the fact that the distributions of descriptor vectors among general images and repetitive-pattern images are significantly different. Comprehensive experiments for marker images confirm that the proposed marker image evaluation method distinguishes images vulnerable to occlusion and repetitive-pattern images very well. Furthermore, we suggest that scale-invariant feature transform (SIFT) is superior to speeded up robust features (SURF) in terms of object tracking in marker images. The proposed method provides users with suitability information for various images, and it helps AR systems to be realized more effectively.