이족 보행 로봇을 실생활에 적용하기 위해서는 다양한 환경에서의 강인한 보행 뿐만 아니라, 현재 위치를 인식하여 목표 위치로의 경로를 생성하고, 경로를 추종하는 기능이 요구된다. 최근에 많이 사용되고 있는 RFID는 이동 로봇의 위치인식 및 경로 생성에 손쉽게 활용이 가능하다. 그러나 이족 로봇은 보행시에 불안정성을 내포하고 있어 주어진 경로에서 벗어나기 쉽다. 본 논문에서는 FSR(Force Sensing Resistor)센서, 자이로와 가속도 센서를 이용하여 이족 보행 로봇의 보행 안정화 방법을 제안하였다. 또한 양발에 RFID 센서를 장착하여 이족 보행 로봇의 위치 인식 후 경로를 추종하는 알고리즘을 제안하였다. 제안된 보행 안정화 알고리즘은 실제 제작된 이족 보행 로봇을 이용하여 비평탄 지형에서 실험하여 검증하였으며, 경로 추종 실험은 RFID센서를 로봇의 발바닥에 장착하여 평탄 지형에서 보행실험을 통해 검증하였다.
인공위성 추적 안테나 제어 시스템은 로테이터에 해당하는 DC 서보모터에 의해 안테나의 방위각 및 앙각을 제어함으로써 인공위성의 현재 위치를 추적하고자 하는 시스템이다. 한편 제어 시스템의 설계를 위한 위성추적 시스템의 선형모델은 일반적인 DC 서보모터의 위치 제어 시스템과는 달리 바람에 의한 토오크 외란과 베어링 및 공기역학적 마찰로 인한 전달함수의 파라메타 변동이 존재하므로 이러한 시스템의 불확실성에도 불구하고 만족스러운 명령추종성를 가지는 강인한 제어 시스템의 설계가 요구된다. 본 연구에서는 유전 알고리즘을 사용하여 복잡한 최적화의 과정없이 가중치 함수와 설계 파라메타 ${\gamma}$를 동시에 최적화함으로써 시스템의 파라메타 변동에 대한 강인한 안정성과 기준모델에 따른 최적의 명령추종성을 가지는 위성추적 안테나 $H{\infty}$ 제어 시스템을 설계한다. 이를 위해 강인한 안정성을 가지는 해집단내에서 기준모델의 출력을 최적으로 추종하도록 유전 알고리즘을 사용하여 적절히 주어진 가중치 함수의 게인 및 동특성 파라메타와 설계 파라메타 ${\gamma}$를 동시에 최적화한다. 끝으로 컴퓨터 시뮬레이션을 통하여 설계된 위성추적 안테나 $H{\infty}$ 제어 시스템의 유용성을 확인한다.
영상등록은 영상모자�掠茱� 중 중요한 기술로 인식되고 있으며, 파노라마 영상생성이나 비디오 모니터링, 영상복원 등과 같은 다양한 분야에서 사용될 수 있다. 영상등록에서 중요한 처리과정은 많은 시간이 소요되는 특징점 검출과 추적이다. 본 연구에서는 연속된 영상자료에서 특징점을 검출하고 추적하기 위해서 KLT 특징점 추적자를 제안하였으며, 무인헬기에서 촬영된 연속영상프레임의 영상등록에 적용하여 효용성을 입증하였다. 그 결과 KLT추적자에 의한 반복처리는 연속영상의 첫 번째 프레임에서 추출된 특징점을 이용하여 전체 프레임에 걸쳐 성공적으로 추적할 수 있었다. 또한, 회전, 축척, 이동량이 다른 각각의 프레임들간의 특징점 추적은 KLT영상피라미드와 처리조건의 선택에 의해 정확도를 향상시킬 수 있었다.
본 논문에서는 능동윤곽모델에 기반을 둔 스네이크 알고리듬을 움직임 추정과 결합하여 안정적인 객체 추적 기술을 제안하였다. 초기 영상에서 목표 객체의 초기 윤곽을 지정한 후 스네이크 알고리듬을 사용하여 객체의 경계 영역을 찾아내고, 동시에 움직임 추정 기술을 사용하여 객체의 이동 방향과 거리를 예측하여 초기값을 갱신한다. 연속되는 다음 영상에서는 스네이크 알고리듬을 같은 방법을 사용하여 객체 영역을 추정한다. 스네이크 알고리듬은 배경과 객체를 구분하는 역할을 수행하고, 움직임 추정 알고리듬은 객체의 이동 방향과 변위를 찾아낸다. 제안된 기술은 기존의 형태모델에 기반을 둔 추적 기술에 비해 상당히 계산량이 줄기 때문에 실시간 객체 추적이 가능하며 복잡한 배경에서도 추적의 정확도를 유지하는 장점이 있다.
본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다 따라서 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였다. GRNN을 사용함으로써 매핑기능은 원활하게 할 수 있었고, 머리의 움직임은 시선 매핑 기능에 의해 적절하게 시선추적에 반영되어 얼굴의 움직임이 있는 경우에도 시선추적이 가능토록 하였고, 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참석하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90%, 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.
본 논문에서는 기존 파티클 스웜 최적화를 기반으로 추적 대상 객체의 이동 궤적을 이용하는 객체 추적기에서 시간 정보 활용의 문제점을 개선한 강인한 객체 추적 알고리즘을 제안한다. 제안하는 알고리즘은 추적 대상 객체와 유사한 특징을 가지는 변위들의 집합에 대한 위치들의 온라인 업데이트와 추적을 가능하게 한다. 객체들의 중첩을 검출하고 추적 대상의 위치를 결정하기 위해 궤적 정보와 변위들의 집합을 기반으로 적응적 파라미터를 사용하는 규칙기반 접근을 사용한다. 기존 알고리즘들과 비교해보면 제안하는 접근법은 가용한 정보를 복합적으로 사용함으로써 각종 임계값에 대한 적응적 조정을 가능하게 한다. 또한, 파티클 스웜 최적화에서 발산에 의한 손실과 불완전한 수렴의 문제를 해결하기 위해 효율적인 가중치 조절 함수를 제안하고 있다. 제안하는 가중치 조절 함수는 파티클들이 최적의 해에 수렴하기 이전에 전체 프레임 영역에서 탐색할 수 있도록 한다. 유사한 특징 조합을 가지는 다중 객체가 존재하는 환경에서 제안 알고리즘을 테스트한 결과, 기존 스웜 최적화 기반의 객체 추적기들에 비해 기존 유사 변위들에 대한 잘못된 추적을 현저히 줄이는 것을 확인할 수 있었다.
차량의 물체 인식에 사용되던 센서인 레이더 센서를 위치 추정에 사용하기 위한 연구들이 진행되고 있다. 특히 레이더 센서에서 출력되는 도플러 속도를 이용하여 동적 물체와 정적 물체를 분류하고, 정적 물체만을 이용하여 에고 모션을 계산하는 방법이 연구되었다. 기존의 동적 물체 분류에서는 RANSAC을 사용한 방법이 제시되었는데, 단 한 번의 알고리즘 실패가 큰 영향을 미치는 위치 추정의 특성상 더 높은 성능을 가진 분류 방법이 필요하다. 본 논문에서는 동적 물체의 추적 및 필터링을 통해 기존 방법보다 분류 성능을 높이는 방법에 대해 제안한다. 추가적으로 GMPHD 필터를 사용하여 추적 성능을 최대로 향상시킨다. 제안된 방법은 기존의 방법과 비교하여 분류 정확도에서 더 높은 성능을 보였으며, 특히 알고리즘의 실패를 방지할 수 있다는 것을 보인다.
본 논문에서는 단일 영역 정보만을 활용하는 기존의 방법론을 개선하기 위해, 물체의 맥락영역에 대한 정보를 함께 물체 추적에 활용하는 새로운 기법을 제시한다. 기존의 방법론들은 모든 후보 영역들을 독립적으로 처리하는 구조로, 비슷한 외양의 영역들이 등장하는 경우 이를 성공적으로 구분하지 못하는 문제점을 보여주었다. 이는 주어진 장면 내에 등장하는 모든 후보 물체 영역들에 대한 맥락 정보를 고려하지 못하여 생기는 문제이다. 제안하는 방법론에서는 비슷한 외양의 영역들 간의 특징점 정보 교환을 보조하고 이들 간의 구별성을 높이는 것을 목표로 하였다. 이를 구현하기 위해 MLP-믹서 (MLP-Mixer) 모델을 활용하여 맥락영역 간의 정보 교환을 모델링하는 모듈을 제시하였다. 이를 통해 구현된 특징점 채널별, 영역간의 상호작용 연산은 영역의 개별 특징점 표현에 대해 장면 맥락 정보가 내장될 수 있도록 보조한다. 제안한 방법론의 성능을 평가하기 위해 대규모 물체 추적 데이터셋인 LaSOT을 사용하였고, 성능 평가 결과 제안한 알고리즘은 AUC 지표 기준 0.560의 높은 성능과 함께 65fps의 실시간 속도로 동작함을 확인하였다.
실시간 객체 인식 및 추적은 컴퓨터 비전 응용 산업이 발달하면서 그 중요성이 더해지고 있다. 객체 추적을 위해 많이 이용되고 있는 알고리즘으로 Mean-Shift 알고리즘이 있다. Mean-Shift 알고리즘을 기반으로 한 객체 추적 알고리즘은 구현이 간단하고, 적은 계산 복잡도를 갖는 장점이 있다. 따라서 실시간 객체 추적 시스템에 적합하다고 할 수 있지만, 지역 모드로의 수렴만을 보장하는 특성으로 인해 객체의 수가 많은 경우 좋은 성능을 나타내지 못하는 단점을 가지고 있다. 그러므로 본 논문에서는 다중 이동 객체를 실시간으로 추적하기 위한 광류기반의 움직임 추정 기법을 제안한다. 제안된 알고리즘의 성능을 확인하기 위해 다중 이동 객체의 인식 실험 결과 유사도는 0.96으로 기존의 Mean-Shift 알고리즘에 비해 약 13.4% 정도 유사도가 개선되었고 평균 픽셀 오류도 3.07로 또한 50% 이상 감소하였다. 향후 알고리즘을 개선하여 처리 속도를 더욱 줄임으로써 매우 빠른 이동 객체 인식과 상황 인지 알고리즘을 추가한다면 보다 효율적인 인식 및 추적 시스템을 구축할 수 있을 것으로 사료된다.
본 논문은 AGV(autonomous guided vehicle)의 센서융합을 통한 위치측정(localization)과 라인 트레킹(line tracking) 방법인 AGV의 유도 시스템(guidance system)에 관한 연구이다. 기존에 AGV는 유도 되어진 선만을 주행 가능한 시스템이었고, 그러한 유도 시스템에 대표적인 방법으로는 자기-자이로 유도(magnet-gyro guidance) 방식과 유선 유도(wire guidance) 방식이 있었다. 하지만 이들은 설치 및 유지보수에 대한 비용이 높고, 작업 환경의 변화에 따른 시스템의 변경이 어렵다는 단점이 있다. 이러한 문제점을 해결하기 위해, 본 논문에서는 레이저 내비게이션과 자이로, 엔코더를 함께 이용하여 외란에 강인하고 작업 환경 및 작업의 내용에 따른 주행 경로 변경이 유연한 위치측정 시스템을 구현하였다. 또한 유도선이 없는 레이저 내비게이션의 라인 트레킹을 위해서 프로그램 상에 가상의 유도선을 설정하고, 경유 노드를 생성하여 AGV와 노드 사이의 각도 차를 바탕으로 주행 제어기(driving controller)를 설계하였다. 실험은 직접 제작한 AGV를 이용하였으며, 동일한 작업공간에서 반복적으로 라인 트래킹 실험을 하였다. 실험 결과, 설정된 주행선의 경로와 실제 AGV 사이의 최대 오차가 49.93mm 이내였으며, 제안한 시스템이 AGV의 라인 트레킹에 효율적임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.