• Title/Summary/Keyword: Robust speed control

Search Result 543, Processing Time 0.036 seconds

$H_{\infty}$ Position Servo Control of Optical Pick-Ups (광 픽업 장치의 $H_{\infty}$ 위치 서보제어)

  • 임승철;김윤영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.119-124
    • /
    • 1996
  • Recently, high speed optical disk drives are increasingly demanded to read or write data fastly enough. To this end, both structure and controller designs of their optical pick-ups should be improved concurrently. In this paper, the pick-up during auto-focusing motion is mathematically modelled retaining all its peculiar features. The model turns out a linear time invariant system suitable for a control design method named H$_{\infty}$ which ensures robust stability in the presence of system uncertainties. Numerical simulation are performed to demonstrate the controller robustness with appropriate performance specifications being satisfied..

  • PDF

Self-Tuning Fuzzy Logic Controller for a Dual Star Induction Machine

  • Merabet, Elkheir;Amimeur, Hocine;Hamoudi, Farid;Abdessemed, Rachid
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.133-138
    • /
    • 2011
  • This paper proposes a simple but robust self-tuning fuzzy logic controller for the speed regulation of a dual star induction machine based on indirect field oriented control. For feed the two star of this machine, two voltage source inverters based on sinus-triangular pulse-width modulation techniques are introduced. The simulation results show the robustness and good performance of the proposed controller.

Direct Vector Control of SLM using STATOR TAPPED COIL (STATOR TAPPED COlL을 이용한 편측식 선형유도전동기의 직접벡터제어)

  • Im, Dal-Ho;Kwon, Byung-Il;Kim, Chang-Up;Yun, Ho;Im, Hyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.692-694
    • /
    • 1992
  • This paper describes a robust flux bonging scheme which utilizes the windings of the machine itself to implement field orientation control of SLIM (Single-sided Linear Induction Motor). By subtracting the voltage across adjacent motor coils of the same phase which are named STATOR TAPPED COIL, a flux signal is obtained which is insensible to stater resister drop at a low speed that exerts a bad Influence on field orientation. The method using STATOR TAPPED COIL has been implemented at SLIM in our laboratory, and experimental results are being scrutinized.

  • PDF

Development of Omnidirectional Ranging System Based on Structured Light Image (구조광 영상기반 전방향 거리측정 시스템 개발)

  • Shin, Jin;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.479-486
    • /
    • 2012
  • In this paper, a ranging system is proposed that is able to measure 360 degree omnidirectional distances to environment objects. The ranging system is based on the structured light imaging system with catadioptric omnidirectional mirror. In order to make the ranging system robust against environmental illumination, efficient structured light image processing algorithms are developed; sequential integration of difference images with modulated structured light and radial search based on Bresenham line drawing algorithm. A dedicated FPGA image processor is developed to speed up the overall image processing. Also the distance equation is derived in the omnidirectional imaging system with a hyperbolic mirror. It is expected that the omnidirectional ranging system is useful for mapping and localization of mobile robot. Experiments are carried out to verify the performance of the proposed ranging system.

H${\infty}$discrete-time servo control of optical pick-ups (광 픽업 장치의 H${\infty}$이산시간 서보제어)

  • 임승철;김윤영
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.521-528
    • /
    • 1996
  • Recently, higher speed optical disk drives including computer CD-ROM drives tend to be increasingly demanded to read or write the enormous volume of digital data. To this end, both structure and controller designs of the optical pick-ups should be improved concurrently. In this paper, the pick-up during auto-focusing motion is mathematically modelled retaining all its peculiar features. The model turns out a linear time invariant system suitable for a control design namedH${\infty}$ which ensures robust stability in the presence of system uncertainties. Numerical simulations are performed to demonstrate the robustness with appropriate performance specifications being satisfied. In addition, as the implementation issue of it, procedures of temporal discretization as well as model reduction of the controller are also addressed.

  • PDF

A Study on Sensorless Control of PMSM using Sliding Mode Observer in high speed range (슬라이딩 모드 관측기를 이용한 고속 영역에서의 PMSM 센서리스 제어에 관한 연구)

  • Kang K.L.;Kim Jang-Mok;Lee S.H.;Hwag K.B.;Kim K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.745-749
    • /
    • 2003
  • The iterative sliding mode observer is proposed to control sensorless PMSM(Permanent Magnet Synchronous Motor). Proposed sliding mode observer has the character which is robust to the disturbance and parameter variation. Low pass filter with the variable cutoff frequency is also proposed to compensate rotor angle, it is led to saving memory and minimizing operation time. Experimental results shows that the proposed sliding mode observer leads to the proper performance.

  • PDF

DECOUPLING CONTROL OF AN INDUCTION MOTOR WITH RECURSIVE ADAPTATION OF ROTOR RESISTANCE

  • Kim, Gyu-Sik;Kim, Jae-Yoon;Yim, Chung-Hyuk;Kim, Joohn-Sheok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.23-28
    • /
    • 1998
  • We propose a nonlinear feedback controller that can control the induction motors with high dynamic performance by means of decoupling of motor speed and rotor flux. The nonlinear feedback controller needs the information on some motor parameters. Among them, rotor resistance varies greatly with machine temperature. A new recursive adaptation algorithm for rotor resistance which can be applied to our nonlinear feedback controller is also presented in this paper. The recursive adaptation algorithm makes the estimated value of rotor resistance track its real value. Some simulation results show that the adaptation algorithm for rotor resistance is robust against the variation of stator resistance and mutual inductance. In addition, it is computationally simple and has small estimation errors. To demonstrate the practical significance of our results, we present some experimental results.

  • PDF

Region-based Vessel Segmentation Using Level Set Framework

  • Yu Gang;Lin Pan;Li Peng;Bian Zhengzhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.660-667
    • /
    • 2006
  • This paper presents a novel region-based snake method for vessel segmentation. According to geometric shape analysis of the vessel structure with different scale, an efficient statistical estimation of vessel branches is introduced into the energy objective function, which applies not only the vessel intensity information, but also geometric information of line-like structure in the image. The defined energy function is minimized using the gradient descent method and a new region-based speed function is obtained, which is more accurate to the vessel structure and not sensitive to the initial condition. The narrow band algorithm in the level set framework implements the proposed method, the solution of which is steady. The segmentation experiments are shown on several images. Compared with other geometric active contour models, the proposed method is more efficient and robust.

Design of Adaptive Regulator Using the Explicit Criterion Minimization (명시적 평가지수 최소화 방법에 의한 적응 레귤레이터의 설계)

  • 이상재;채창현;안태천;조시형
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.7
    • /
    • pp.997-1004
    • /
    • 1990
  • In this paper, a design method of a robust adaptive regulator with feedfoward path based on the explicit criterion minimization is proposed. The convergence speed of parameter estimation is improved by using the stochastic Newton minimization method in the criterion minimization algorithm, and sensitivity derivatives are used in the regulator calculation for improving the robustness of the control system. Trh proposed adaptive regulator is applied to the stable minimum-phase and nonminimum-phase system, the results are shown that control performance and disturbance compensation ability of the regulator are improved. And the choosing method of input penalty is proposed.

  • PDF

Robust On-line Rotor Time Constant Estimation for Induction Machines

  • Yoo, Anno
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1000-1007
    • /
    • 2014
  • This paper proposes an on-line rotor time constant estimation strategy for indirect field oriented induction machines. The performance of the indirect field oriented control is dependent especially on the rotor time constant whose value varies according to the temperature. The proposed method calculates the difference between the nominal rotor time constant and the real value from the d- and q-axis integration terms of a proportional integral (PI) current regulator and the demanded voltages of the induction machine to regulate the current in the steady state. Because the proposed strategy has a simple structure and is available in wide speed and torque ranges, the proposed method can be easily used in the industrial field. The effectiveness of proposed strategy is verified with simulations and a 7.5kW experimental setup.