본 논문에서는 홍채인식과 화자식별 방법을 결합한 고도의 개인확인 시스템을 제안한다. 제안된 방법은 홍채인식과 화자식별의 장점만을 부각시켜 최종적으로 결정법칙에 의해 화자를 인식하는 구조로 되어 있으며, 특히 음성에 노이즈가 첨가된 환경하에서도 우수한 성능을 보일 수 있도록 시스템을 구성하였다. 제안된 알고리즘의 성능을 검증하기 위하여 실험한 결과, 보안의 정도가 높은 상급(High)에 해당하는 인식률은 홍채만을 이용한 경우보다 56.7%, 음성을 이용한 화자식별 방법만을 사용한 경우보다 10% 정도 인식률이 향상되었다. 또한 음성에 노이즈를 첨가한 경우에도 보안의 정도가 높은 상급(High)에 해당하는 인식률은 홍채만 이용한 경우보다 인식률이 30%, 노이즈가 첨가된 음성만 이용한 경우보다 60% 정도 향상된 인식률을 보였다.
In this paper, we propose a rank-weighted reconstruction feature to improve the robustness of a feed-forward deep neural network (FFDNN)-based acoustic model. In the FFDNN-based acoustic model, an input feature is constructed by vectorizing a submatrix that is created by slicing the feature vectors of frames within a context window. In this type of feature construction, the appropriate context window size is important because it determines the amount of trivial or discriminative information, such as redundancy, or temporal context of the input features. However, we ascertained whether a single parameter is sufficiently able to control the quantity of information. Therefore, we investigated the input feature construction from the perspectives of rank and nullity, and proposed a rank-weighted reconstruction feature herein, that allows for the retention of speech information components and the reduction in trivial components. The proposed method was evaluated in the TIMIT phone recognition and Wall Street Journal (WSJ) domains. The proposed method reduced the phone error rate of the TIMIT domain from 18.4% to 18.0%, and the word error rate of the WSJ domain from 4.70% to 4.43%.
최근 립리딩에 대한 연구는 음성인식방법에 있어서 부가적인 정보를 제공하여 잡음환경에서 견인한 음성 인식을 하거나 음성정보의 부가적인 특징벡터로 사용하기 위한 방법으로 연구되고 있다. 그러나 립리딩 연구의 대부분은 실험실 환경하의 제한된 결과로서, 실제 다양한 동적 환경에서의 견인성에 대해서는 연구된 바가 없다. 현재 우리는 입술정보만을 이용한 자동22단어 인식기를 만들었으며, 이미지 기반 립리딩의 성능은 53.54%의 성능을 가지고 있다. 본 연구에서는 기 구현된 립리딩 시스템을 기반으로 하여, 립리딩 성능이 환경 적인 변화에 대해서 얼마나 안정할 수 있는지, 그리고 립리딩의 인식성능 저하를 일으키는 주요 요인이 무엇인지에 대하여 연구하였다. 입술이미지의 동적 변이로서는 이동, 회전. 크기변화와 같은 공간적 변화와 빛에 의한 조명변화를 고려하였다. 실험용 데이터로는 영상변환에 의한 시뮬레이션 된 데이터와 동적 변화가 심한 자동차 환경에서 수집한 데이터를 사용하였다. 실험결과 입술의 공간 변화가 인식성능 저하의 한가지 요인으로 작용함을 발견하였다. 그러나 실제적으로 공간변화보다 더 심각한 성능저하 원인은 시간흐름에 따른 조명조건의 변화로써 70%이상의 왜곡이 발생했다. 따라서 신뢰할 수 있는 립리딩 시스템 구현을 위해서 고려해야 할 가장 큰 요인은 빛의 변화임을 발견할 수 있었다.
Voice activity detection is important Problem in the speech recognition and communication. This paper introduces feature parameter which is reconstructed by the spectral entropy of information theory for the robust voice activity detection in the noise environment, analyzes and compares it with the energy method of voice activity detection and performance. In experiment, we confirmed that the spectral entropy is more feature parameter than the energy method for the robust voice activity detection in the various noise environment.
일반적으로 통계적 언어모델의 확률을 추정하는 방법은 대량의 텍스트 데이터로부터 출현빈도가 높은 단어를 선택하여 사용하고 있다. 하지만 특정 태스크에서 적용할 언어모델의 경우 시간적, 비용적 측면을 고려할 때 대용량의 텍스트의 사용은 비효율적일 것이다. 본 논문에서는 특정 태스크에서 사용하기 위해 소량의 텍스트 데이터로부터 효율적인 언어모델을 작성하는 방법을 제안한다. 즉, 언어모델을 작성할 때 출현빈도가 낮은 단어의 빈도를 개선하기 위해 같은 문장을 반복하여 학습에 참가시키므로 단어의 발생확률을 좀 더 강건하게 하였으며 제안된 언어모델을 이용하여 3명이 발성한 항공편 예약관련 200문장에 대하여 연속음성인식 실험을 수행하였다. 인식실험 결과, 반복학습에 의해 작성한 언어모델을 이용한 경우가 반복학습 적용 전에 비하여 평균 20.4%의 인식률 향상을 보였다. 또한 기존의 문맥자유문법을 이용한 시스템과 비교하여 인식률이 평균 13.4% 향상되어 제안한 방법이 시스템에 유효함을 확인하였다.
A simple efficient method of spotting and recognizing hand gestures in video is presented using a network of hidden Markov models and dynamic programming search algorithm. The description starts from designing a set of isolated trajectory models which are stochastic and robust enough to characterize highly variable patterns like human motion, handwriting, and speech. Those models are interconnected to form a single big network termed a spotting network or a spotter that models a continuous stream of gestures and non-gestures as well. The inference over the model is based on dynamic programming. The proposed model is highly efficient and can readily be extended to a variety of recurrent pattern recognition tasks. The test result without any engineering has shown the potential for practical application. At the end of the paper we add some related experimental result that has been obtained using a different model - dynamic Bayesian network - which is also a type of stochastic model.
어휘 인식 시스템에서는 훈련 중에 적용되지 않는 음소에 대한 문제점으로 인해 시스템에 저장된 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 군집화 방법을 사용하여 유사 음소 모델을 관리하는 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 결정트리 군집화 방법을 적용하여 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하여 모델의 재생성 과정을 줄이고 강인하고 정확한 음향 모델을 제공한다. 또한, 제안된 시스템의 사용으로 시스템에서 기존에 생성되어진 음향 모델에 추가적으로 유사 음소 모델을 생성하여 제공하므로 음성 인식에 강인한 음향 모델을 구성한다. 본 연구에서 제안된 방법으로 실내 환경에 대하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 실내 환경의 어휘 종속 실험에서는 98.3%의 인식 성능을 보였고, 어휘 독립 실험에서 98.4%의 인식 성능을 보였다.
In this paper, we propose L1-norm regularization for state vector adaptation of subspace Gaussian mixture model (SGMM). When you design a speaker adaptation system with GMM-HMM acoustic model, MAP is the most typical technique to be considered. However, in MAP adaptation procedure, large number of parameters should be updated simultaneously. We can adopt sparse adaptation such as L1-norm regularization or sparse MAP to cope with that, but the performance of sparse adaptation is not good as MAP adaptation. However, SGMM does not suffer a lot from sparse adaptation as GMM-HMM because each Gaussian mean vector in SGMM is defined as a weighted sum of basis vectors, which is much robust to the fluctuation of parameters. Since there are only a few adaptation techniques appropriate for SGMM, our proposed method could be powerful especially when the number of adaptation data is limited. Experimental results show that error reduction rate of the proposed method is better than the result of MAP adaptation of SGMM, even with small adaptation data.
We consider the feature recombination technique in a multiband approach to speaker identification and verification. To overcome the ineffectiveness of conventional feature recombination in broadband noisy environments, we propose a new subband feature recombination which uses subband likelihoods and a subband reliable-feature selection technique with an adaptive noise model. In the decision step of speaker recognition, a few very low unreliable feature likelihood scores can cause a speaker recognition system to make an incorrect decision. To overcome this problem, reliable-feature selection adjusts the likelihood scores of an unreliable feature by comparison with those of an adaptive noise model, which is estimated by the maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. To evaluate the effectiveness of the proposed methods in noisy environments, we use the TIMIT database and the NTIMIT database, which is the corresponding telephone version of TIMIT database. The proposed subband feature recombination with subband reliable-feature selection achieves better performance than the conventional feature recombination system with reliable-feature selection.
본 논문에서는 한국어 연결 숫자음 인식을 위한 최대 사후 eigenvoice을 사용한 자기적응 기법을 제안한다. 제안된 최대 사후 eigenvoice 기법은 eigenvoice 계수에 대한 확률 밀도 함수를 가정함으로 구성된다. 제안된 알고리즘은 기존 eigenvoice 추정 과정에 선 분포 모델을 포함하는 일반적인 해를 제공하는 구조를 갖는다. 인식할 한 문장만을 사용하는 자기 적응 시스템을 위해 매우 강인한 특성을 갖는 최대 사후 eigenvoice 적응 기법을 사용하였다. 한국어 연결 숫자음에 대한 일련의 자기 적응 실험결과 제안된 알고리즘의 성능은 매우 적은 량의 적응 데이터에 대해 기존 eigenvoice 알고리즘에 비해 우수한 성능을 나타냈었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.