• 제목/요약/키워드: Robust speech recognition.

검색결과 225건 처리시간 0.019초

강인한 음성 인식 시스템을 사용한 감정 인식 (Emotion Recognition using Robust Speech Recognition System)

  • 김원구
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.586-591
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

감정에 강인한 음성 인식을 위한 음성 파라메터 (Speech Parameters for the Robust Emotional Speech Recognition)

  • 김원구
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1137-1142
    • /
    • 2010
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient and frequency warped mel-cepstral coefficient were used as feature parameters. And CMS (Cepstral Mean Subtraction) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using vocal tract length normalized mel-cepstral coefficient, its derivatives and CMS as a signal bias removal showed the best performance of 0.78% word error rate. This corresponds to about a 50% word error reduction as compare to the performance of baseline system using mel-cepstral coefficient, its derivatives and CMS.

An Efficient Model Parameter Compensation Method foe Robust Speech Recognition

  • 정용주
    • 대한음성학회지:말소리
    • /
    • 제45호
    • /
    • pp.107-115
    • /
    • 2003
  • An efficient method that compensates the HMM parameters for the noisy speech recognition is proposed. Instead of assuming some analytical approximations as in the PMC, the proposed method directly re-estimates the HMM parameters by the segmental k-means algorithm. The proposed method has shown improved results compared with the conventional PMC method at reduced computational cost.

  • PDF

잡음음성인식을 위한 음성개선 방식들의 성능 비교 (Performance Comparison of the Speech Enhancement Methods for Noisy Speech Recognition)

  • 정용주
    • 말소리와 음성과학
    • /
    • 제1권2호
    • /
    • pp.9-14
    • /
    • 2009
  • Speech enhancement methods can be generally classified into a few categories and they have been usually compared with each other in terms of speech quality. For the successful use of speech enhancement methods in speech recognition systems, performance comparisons in terms of speech recognition accuracy are necessary. In this paper, we compared the speech recognition performance of some of the representative speech enhancement algorithms which are popularly cited in the literature and used widely. We also compared the performance of speech enhancement methods with other noise robust speech recognition methods like PMC to verify the usefulness of speech enhancement approaches in noise robust speech recognition systems.

  • PDF

청각 및 시가 정보를 이용한 강인한 음성 인식 시스템의 구현 (Constructing a Noise-Robust Speech Recognition System using Acoustic and Visual Information)

  • 이종석;박철훈
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.719-725
    • /
    • 2007
  • In this paper, we present an audio-visual speech recognition system for noise-robust human-computer interaction. Unlike usual speech recognition systems, our system utilizes the visual signal containing speakers' lip movements along with the acoustic signal to obtain robust speech recognition performance against environmental noise. The procedures of acoustic speech processing, visual speech processing, and audio-visual integration are described in detail. Experimental results demonstrate the constructed system significantly enhances the recognition performance in noisy circumstances compared to acoustic-only recognition by using the complementary nature of the two signals.

음성 변환을 사용한 감정 변화에 강인한 음성 인식 (Emotion Robust Speech Recognition using Speech Transformation)

  • 김원구
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.683-687
    • /
    • 2010
  • 본 논문에서는 인간의 감정 변화에 강인한 음성 인식 시스템을 구현하기 위하여 음성 변환 방법 중의 한가지인 주파수 와핑 방법을 사용한 연구를 수행하였다. 이러한 목표를 위하여 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정의 변화에 따라 음성의 스펙트럼이 변화한다는 것과 이러한 변화는 음성 인식 시스템의 성능을 저하시키는 원인 중의 하나임을 관찰하였다. 본 논문에서는 이러한 음성의 변화를 감소시키는 방법으로 주파수 와핑을 학습 과정에 사용하는 방법을 제안하여 감정 변화에 강인한 음성 인식 시스템을 구현하였고 성도 길이 정규화 방법을 사용한 방법과 성능을 비교하였다. HMM을 사용한 단독음 인식 실험에서 제안된 학습 방법은 사용하면 감정이 포함된 데이터에 대한 인식 오차가 기존 방법보다 감소되었다.

자동차 잡음 및 오디오 출력신호가 존재하는 자동차 실내 환경에서의 강인한 음성인식 (Robust Speech Recognition in the Car Interior Environment having Car Noise and Audio Output)

  • 박철호;배재철;배건성
    • 대한음성학회지:말소리
    • /
    • 제62호
    • /
    • pp.85-96
    • /
    • 2007
  • In this paper, we carried out recognition experiments for noisy speech having various levels of car noise and output of an audio system using the speech interface. The speech interface consists of three parts: pre-processing, acoustic echo canceller, post-processing. First, a high pass filter is employed as a pre-processing part to remove some engine noises. Then, an echo canceller implemented by using an FIR-type filter with an NLMS adaptive algorithm is used to remove the music or speech coming from the audio system in a car. As a last part, the MMSE-STSA based speech enhancement method is applied to the out of the echo canceller to remove the residual noise further. For recognition experiments, we generated test signals by adding music to the car noisy speech from Aurora 2 database. The HTK-based continuous HMM system is constructed for a recognition system. Experimental results show that the proposed speech interface is very promising for robust speech recognition in a noisy car environment.

  • PDF

가중 ARMA 필터를 이용한 강인한 음성인식 (Robust Speech Recognition Using Weighted Auto-Regressive Moving Average Filter)

  • 반성민;김형순
    • 말소리와 음성과학
    • /
    • 제2권4호
    • /
    • pp.145-151
    • /
    • 2010
  • In this paper, a robust feature compensation method is proposed for improving the performance of speech recognition. The proposed method is incorporated into the auto-regressive moving average (ARMA) based feature compensation. We employ variable weights for the ARMA filter according to the degree of speech activity, and pass the normalized cepstral sequence through the weighted ARMA filter. Additionally when normalizing the cepstral sequences in training, the cepstral means and variances are estimated from total training utterances. Experimental results show the proposed method significantly improves the speech recognition performance in the noisy and reverberant environments.

  • PDF

방송뉴스 인식에서의 잡음 처리 기법에 대한 고찰 (A Study on Noise-Robust Methods for Broadcast News Speech Recognition)

  • 정용주
    • 대한음성학회지:말소리
    • /
    • 제50호
    • /
    • pp.71-83
    • /
    • 2004
  • Recently, broadcast news speech recognition has become one of the most attractive research areas. If we can transcribe automatically the broadcast news and store their contents in the text form instead of the video or audio signal itself, it will be much easier for us to search for the multimedia databases to obtain what we need. However, the desirable speech signal in the broadcast news are usually affected by the interfering signals such as the background noise and/or the music. Also, the speech of the reporter who is speaking over the telephone or with the ill-conditioned microphone is severely distorted by the channel effect. The interfered or distorted speech may be the main reason for the poor performance in the broadcast news speech recognition. In this paper, we investigated some methods to cope with the problems and we could see some performance improvements in the noisy broadcast news speech recognition.

  • PDF

Filtering of Filter-Bank Energies for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • 제26권3호
    • /
    • pp.273-276
    • /
    • 2004
  • We propose a novel feature processing technique which can provide a cepstral liftering effect in the log-spectral domain. Cepstral liftering aims at the equalization of variance of cepstral coefficients for the distance-based speech recognizer, and as a result, provides the robustness for additive noise and speaker variability. However, in the popular hidden Markov model based framework, cepstral liftering has no effect in recognition performance. We derive a filtering method in log-spectral domain corresponding to the cepstral liftering. The proposed method performs a high-pass filtering based on the decorrelation of filter-bank energies. We show that in noisy speech recognition, the proposed method reduces the error rate by 52.7% to conventional feature.

  • PDF