• Title/Summary/Keyword: Robust speaker recognition

Search Result 57, Processing Time 0.022 seconds

Performance Enhancement for Speaker Verification Using Incremental Robust Adaptation in GMM (가무시안 혼합모델에서 점진적 강인적응을 통한 화자확인 성능개선)

  • Kim, Eun-Young;Seo, Chang-Woo;Lim, Yong-Hwan;Jeon, Seong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.268-272
    • /
    • 2009
  • In this paper, we propose a Gaussian Mixture Model (GMM) based incremental robust adaptation with a forgetting factor for the speaker verification. Speaker recognition system uses a speaker model adaptation method with small amounts of data in order to obtain a good performance. However, a conventional adaptation method has vulnerable to the outlier from the irregular utterance variations and the presence noise, which results in inaccurate speaker model. As time goes by, a rate in which new data are adapted to a model is reduced. The proposed algorithm uses an incremental robust adaptation in order to reduce effect of outlier and use forgetting factor in order to maintain adaptive rate of new data on GMM based speaker model. The incremental robust adaptation uses a method which registers small amount of data in a speaker recognition model and adapts a model to new data to be tested. Experimental results from the data set gathered over seven months show that the proposed algorithm is robust against outliers and maintains adaptive rate of new data.

Robust Speaker Identification Using Linear Transformation Optimized for Diagonal Covariance GMM (대각공분산 GMM에 최적인 선형변환을 이용한 강인한 화자식별)

  • Kim, Min-Seok;Yang, Il-Ho;Yu, Ha-Jin
    • MALSORI
    • /
    • no.65
    • /
    • pp.67-80
    • /
    • 2008
  • We have been building a text-independent speaker recognition system that is robust to unknown channel and noise environments. In this paper, we propose a linear transformation to obtain robust features. The transformation is optimized to maximize the distances between the Gaussian mixtures. We use rotation of the axes, to cope with the problem of scaling the transformation matrix. The proposed transformation is similar to PCA or LDA, but can achieve better result in some special cases where PCA and LDA can not work properly. We use YOHO database to evaluate the proposed method and compare the result with PCA and LDA. The results show that the proposed method outperforms all the baseline, PCA and LDA.

  • PDF

Safety Robust Speaker Recognition Against Utterance Variationsed (발성변화에 강인한 화자 인식에 관한 연구)

  • Lee Ki-Yong
    • Journal of Internet Computing and Services
    • /
    • v.5 no.2
    • /
    • pp.69-73
    • /
    • 2004
  • A speaker model In speaker recognition system is to be trained from a large data set gathered in multiple sessions. Large data set requires large amount of memory and computation, and moreover it's practically hard to make users utter the data inseveral sessions. Recently the incremental adaptation methods are proposed to cover the problems, However, the data set gathered from multiple sessions is vulnerable to the outliers from the irregular utterance variations and the presence of noise, which result in inaccurate speaker model. In this paper, we propose an incremental robust adaptation method to minimize the influence of outliers on Gaussian Mixture Madel based speaker model. The robust adaptation is obtained from an incremental version of M-estimation. Speaker model is initially trained from small amount of data and it is adapted recursively with the data available in each session, Experimental results from the data set gathered over seven months show that the proposed method is robust against outliers.

  • PDF

A study on the text-dependent speaker recognition system Using a robust matching process (강인한 정합과정을 이용한 텍스트 종속 화자인식에 관한 연구)

  • Lee, Han-Ku;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.605-608
    • /
    • 2002
  • A text-dependent speaker recognition system using a robust matching process is studied. The feature histogram of LPC cepstral coefficients for matching is used. The matching process uses mixture network with penalty scores. Using probability and shape comparison of two feature histograms, similarity values are obtained. The experiment results will be shown to show the effectiveness of the proposed algorithm.

  • PDF

Implementation of a Robust Speaker Recognition System in Noisy Environment Using AR HMM with Duration-term (지속시간항을 갖는 AR HMM을 이용한 잡음환경에서의 강인 화자인식 시스템 구현)

  • 이기용;임재열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.26-33
    • /
    • 2001
  • Though speaker recognition based on conventional AR HMM shows good performance, its lack of modeling the environmental noise makes its performance degraded in case of practical noisy environment. In this paper, a robust speaker recognition system based on AR HMM is proposed, where noise is considered in the observation signal model for practical noisy environment and duration-term is considered to increase performance. Experimental results, using the digits database from 100 speakers (77 males and 23 females) under white noise and car noise, show improved performance.

  • PDF

Implementation of Speaker Independent Speech Recognition System Using Independent Component Analysis based on DSP (독립성분분석을 이용한 DSP 기반의 화자 독립 음성 인식 시스템의 구현)

  • 김창근;박진영;박정원;이광석;허강인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.359-364
    • /
    • 2004
  • In this paper, we implemented real-time speaker undependent speech recognizer that is robust in noise environment using DSP(Digital Signal Processor). Implemented system is composed of TMS320C32 that is floating-point DSP of Texas Instrument Inc. and CODEC for real-time speech input. Speech feature parameter of the speech recognizer used robust feature parameter in noise environment that is transformed feature space of MFCC(met frequency cepstral coefficient) using ICA(Independent Component Analysis) on behalf of MFCC. In recognition result in noise environment, we hew that recognition performance of ICA feature parameter is superior than that of MFCC.

A Robust Speaker Identification Using Optimized Confidence and Modified HMM Decoder (최적화된 관측 신뢰도와 변형된 HMM 디코더를 이용한 잡음에 강인한 화자식별 시스템)

  • Tariquzzaman, Md.;Kim, Jin-Young;Na, Seung-Yu
    • MALSORI
    • /
    • no.64
    • /
    • pp.121-135
    • /
    • 2007
  • Speech signal is distorted by channel characteristics or additive noise and then the performances of speaker or speech recognition are severely degraded. To cope with the noise problem, we propose a modified HMM decoder algorithm using SNR-based observation confidence, which was successfully applied for GMM in speaker identification task. The modification is done by weighting observation probabilities with reliability values obtained from SNR. Also, we apply PSO (particle swarm optimization) method to the confidence function for maximizing the speaker identification performance. To evaluate our proposed method, we used the ETRI database for speaker recognition. The experimental results showed that the performance was definitely enhanced with the modified HMM decoder algorithm.

  • PDF

Filtering of Filter-Bank Energies for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.273-276
    • /
    • 2004
  • We propose a novel feature processing technique which can provide a cepstral liftering effect in the log-spectral domain. Cepstral liftering aims at the equalization of variance of cepstral coefficients for the distance-based speech recognizer, and as a result, provides the robustness for additive noise and speaker variability. However, in the popular hidden Markov model based framework, cepstral liftering has no effect in recognition performance. We derive a filtering method in log-spectral domain corresponding to the cepstral liftering. The proposed method performs a high-pass filtering based on the decorrelation of filter-bank energies. We show that in noisy speech recognition, the proposed method reduces the error rate by 52.7% to conventional feature.

  • PDF

A Study on the Channel Normalized Pitch Synchronous Cepstrum for Speaker Recognition (채널에 강인한 화자 인식을 위한 채널 정규화 피치 동기 켑스트럼에 관한 연구)

  • 김유진;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.61-74
    • /
    • 2004
  • In this paper, a contort- and speaker-dependent cepstrum extraction method and a channel normalization method for minimizing the loss of speaker characteristics in the cepstrum were proposed for a robust speaker recognition system over the channel. The proposed extraction method creates a cepstrum based on the pitch synchronous analysis using the inherent pitch of the speaker. Therefore, the cepstrum called the 〃pitch synchronous cepstrum〃 (PSC) represents the impulse response of the vocal tract more accurately in voiced speech. And the PSC can compensate for channel distortion because the pitch is more robust in a channel environment than the spectrum of speech. And the proposed channel normalization method, the 〃formant-broadened pitch synchronous CMS〃 (FBPSCMS), applies the Formant-Broadened CMS to the PSC and improves the accuracy of the intraframe processing. We compared the text-independent closed-set speaker identification on 56 females and 112 males using TIMIT and NTIMIT database, respectively. The results show that pitch synchronous km improves the error reduction rate by up to 7.7% in comparison with conventional short-time cepstrum and the error rates of the FBPSCMS are more stable and lower than those of pole-filtered CMS.

Noise-Robust Speaker Recognition Using Subband Likelihoods and Reliable-Feature Selection

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.89-100
    • /
    • 2008
  • We consider the feature recombination technique in a multiband approach to speaker identification and verification. To overcome the ineffectiveness of conventional feature recombination in broadband noisy environments, we propose a new subband feature recombination which uses subband likelihoods and a subband reliable-feature selection technique with an adaptive noise model. In the decision step of speaker recognition, a few very low unreliable feature likelihood scores can cause a speaker recognition system to make an incorrect decision. To overcome this problem, reliable-feature selection adjusts the likelihood scores of an unreliable feature by comparison with those of an adaptive noise model, which is estimated by the maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. To evaluate the effectiveness of the proposed methods in noisy environments, we use the TIMIT database and the NTIMIT database, which is the corresponding telephone version of TIMIT database. The proposed subband feature recombination with subband reliable-feature selection achieves better performance than the conventional feature recombination system with reliable-feature selection.

  • PDF