• Title/Summary/Keyword: Robust estimator

Search Result 278, Processing Time 0.021 seconds

Performance Evaluation of Sliding Mode Controller with Perturbation Estimator (섭동 추정기를 갖는 슬라이딩 모드 제어기의 성능 평가)

  • Choe, Seung-Bok;Ham, Jun-Ho;Han, Yeong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1859-1865
    • /
    • 2002
  • In the conventional sliding mode control technique, a priori knowledge of the bound of external disturbances or/and parameter uncertainties is required to assure control robustness. This, however, may not be easy to obtain in practical situation. This work presents a novel methodology, a sliding mode controller with perturbation estimator, which offers a robust control performance without a priori knowledge about the perturbations (disturbances and parameter uncertainties). The proposed technique is featured by an integrated average value of the imposed perturbation over a certain sampling period. In order to demonstrate the effectiveness of the proposed methodology, a two-link robotic system is adopted and its position control performance is evaluated. In addition, a comparative work between the conventional technique and the proposed one is undertaken.

A Generalized M-Estimator in Linear Regression

  • Song, Moon-Sup;Park, Chang-Soon;Nam, Ho-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1994
  • We propose a robust regression estimator which has both a high breakdown point and a bounded influence function. The main contribution of this article is to present a weight function in the generalized M (GM)-estimator. The weighting schemes which control leverage points only without considering residuals cannot be efficient, since control leverage points only without considering residuals cannot be efficient, since these schemes inevitably downweight some good leverage points. In this paper we propose a weight function which depends both on design points and residuals, so as not to downweight good leverage points. Some motivating illustrations are also given.

  • PDF

Precision Position Control of PMSM using Load Torque Observer and Parameter Compensator (외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀위치제어)

  • Ko Jong-Sun;Lee Yong-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.285-288
    • /
    • 2002
  • This paper presents external load disturbance compensation that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a deadbeat observer To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller The proposed estimator is combined with a high performance load torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • This paper proposes a new diagnosis algorithm to detect broken rotor bars (BRBs) faults in induction motors. The proposed algorithm is composed of a frequency signal dimension order (FSDO) estimator and a fault decision module. The FSDO estimator finds a number of fault-related frequencies in the stator current signature. In the fault decision module, the fault diagnostic index from the FSDO estimator is used depending on the load conditions of the induction motors. Experimental results obtained in a 75 kW three-phase squirrel-cage induction motor show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to a zoom multiple signal classification (ZMUSIC) and a zoom estimation of signal parameters via rotational invariance techniques (ZESPRIT).

CHMM Modeling using LMS Algorithm for Continuous Speech Recognition Improvement (연속 음성 인식 향상을 위해 LMS 알고리즘을 이용한 CHMM 모델링)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.377-382
    • /
    • 2012
  • In this paper, the echo noise robust CHMM learning model using echo cancellation average estimator LMS algorithm is proposed. To be able to adapt to the changing echo noise. For improving the performance of a continuous speech recognition, CHMM models were constructed using echo noise cancellation average estimator LMS algorithm. As a results, SNR of speech obtained by removing Changing environment noise is improved as average 1.93dB, recognition rate improved as 2.1%.

Robust Bayesian inference in finite population sampling with auxiliary information under balanced loss function

  • Kim, Eunyoung;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.685-696
    • /
    • 2014
  • In this paper, we develop Bayesian inference of the finite population mean with the assumption of posterior linearity rather than normality of the superpopulation in the presence of auxiliary information under the balanced loss function. We compare the performance of the optimal Bayes estimator under the balanced loss function with ones of the classical ratio estimator and the usual Bayes estimator in terms of the posterior expected losses, risks and Bayes risks.

Precision Speed Control of PMSM Using Neural Network Disturbance observer and Parameter compensation (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 속도제어)

  • Ko Jong-Sun;Lee Yong-Jae;Kim Kyu-Gyeom
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.389-392
    • /
    • 2001
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Precision Position Control of PMSM using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • Ko Jong-Sun;Kang Young-Jin;Lee Yong-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.49-52
    • /
    • 2002
  • This paper presents neural load torque observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Noise Reduction Using MMSE Estimator-based Adaptive Comb Filtering (MMSE Estimator 기반의 적응 콤 필터링을 이용한 잡음 제거)

  • Park, Jeong-Sik;Oh, Yung-Hwan
    • MALSORI
    • /
    • no.60
    • /
    • pp.181-190
    • /
    • 2006
  • This paper describes a speech enhancement scheme that leads to significant improvements in recognition performance when used in the ASR front-end. The proposed approach is based on adaptive comb filtering and an MMSE-related parameter estimator. While adaptive comb filtering reduces noise components remarkably, it is rarely effective in reducing non-stationary noises. Furthermore, due to the uniformly distributed frequency response of the comb-filter, it can cause serious distortion to clean speech signals. This paper proposes an improved comb-filter that adjusts its spectral magnitude to the original speech, based on the speech absence probability and the gain modification function. In addition, we introduce the modified comb filtering-based speech enhancement scheme for ASR in mobile environments. Evaluation experiments carried out using the Aurora 2 database demonstrate that the proposed method outperforms conventional adaptive comb filtering techniques in both clean and noisy environments.

  • PDF

Intelligent fuzzy weighted input estimation method for the input force on the plate structure

  • Lee, Ming-Hui;Chen, Tsung-Chien
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • The innovative intelligent fuzzy weighted input estimation method which efficiently and robustly estimates the unknown time-varying input force in on-line is presented in this paper. The algorithm includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly synthesize the Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable compromise between the tracking capability and the flexibility against noises. The capability of this inverse method are demonstrated in the input force estimation cases of the plate structure system. The proposed algorithm is further compared by alternating between the constant and adaptive weighting factors. The results show that this method has the properties of faster convergence in the initial response, better target tracking capability, and more effective noise and measurement bias reduction.