• 제목/요약/키워드: Robust controller ($H{\infty}$)

검색결과 359건 처리시간 0.03초

혼합 $H_{\infty}$ 최적화 기법을 이용한 견실 $H_{\infty}$ 증기발생기 수위제어기 설계 (Robust $H_{\infty}$ Controller Design for Steam Generator Water Level Control using Mixed $H_{\infty}$ Optimization Method)

  • 서성환;조희수;박홍배
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.363-369
    • /
    • 1999
  • In this paper, we design the robust $H_{\infty}$ controller for water level control of steam generator using a mixed $H_{\infty}$ optimization with model-matching method. Firstly we choose the desired model which has good disturbance rejection performance. Secondly we design a stabilizing controller to keep the model-matching error small and also provide sufficiently large stability margin against additive perturbations of the nominal plant. Simulation results show that proposed robust $H_{\infty}$ controller at specific power operation has satisfactory performances against the variations of load power, steam flow rate, primary circuit coolant temperature, and feedwater temperature. It can be also observed that the proposed robust $H_{\infty}$ controller exhibits better robust stability than conventional PI controller.

  • PDF

반능동 현가장치의 성능향상을 위한 견실 $H_{\infty}$ 제어기 설계 (Robust $H_{\infty}$ Controller Design for Performance Improvement of Semi-Active Suspension System)

  • 정승권
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.85-90
    • /
    • 2000
  • In this paper, a robust $H_{\infty}$ a controller for semi-active suspension system is proposed. For the improvement of ride quality, the robust $H_{\infty}$ controller is designed to satisfy robust stability and road disturbance attenuation using an $H_{\infty}$ control design procedure. The performances of the design controller for some road conditions are evaluated by computer simulation and finally these simulation results show the usefulness and applicability of the proposed robust $H_{\infty}$ controller.

  • PDF

탐색기 주사루프의 2자유도 강인제어기 설계 (Two Degree of Freedom Robust Controller Design of a Seeker Scan-Loop)

  • 이호평;송창섭
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.157-165
    • /
    • 1995
  • The new formulation of designing the two degree of freedom(TDF) robust controller is proposed using $H_{\infty}$optimization and model matching method. In this formulation the feedback controller and feedforward controller are designed in a single step using $H_{\infty}$optimization procedure. Roughly speaking, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while the feedforward controller is used to improve the robust model matching properties of the closed loop system. The proposed formulation will be illustrated and evaluated on a seeker scan-loop. And the performances of TDF robust controller are compared with those of the $H_{\infty}$ controller designed using Loop Shaping Design Procedure proposed by McFarlane and Glover.lover.

  • PDF

하중함수의 오토 튜닝에 의한 강인한 $H^{\infty}$ 속도제어기의 구현 (Implementation of the robust $H^{\infty}$ speed controller by auto-tuning of the weighting function)

  • 김동완;남징락;황기현;신동률;변기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.142-146
    • /
    • 2000
  • In this paper, we are applied the Genetic Algorithm(GA) to design of the robust $H^{\infty}$ speed controller by auto-tuning of the weighting function. GA is used to design of the weighting functions in the robust $H^{\infty}$ controller. To evaluate the performances of the proposed robust $H^{\infty}$ controller, we make an experiment on $H^{\infty}$ speed controller of an actual DC servo- motor system with nonlinear characteristics. Experimental results show that proposed controller have better performance than those of PD controller.

  • PDF

시간지연 및 파라미터 불확실성을 갖는 선형시스템의 혼합 $H^{2}$/$H^{\infty}$ 제어기 설계 (Mixed $H^{2}$/$H^{\infty}$ controller design for linear system with time delay and parameter uncertainty)

  • 이갑래;정은태;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.560-564
    • /
    • 1996
  • A mixed H$^{2}$/$H^{\infty}$ controller design method for linear systems with time delay in all variables and parameter uncertainties in all system matrices is proposed. Robust $H^{\infty}$ performance and H$^{2}$ performance condition that accounts for model-matching of closed loop system and disturbance rejection is also derived. With expressing uncertain system with linear fractional transformation form, we transform the robust stability and performance problem to the H$^{2}$/$H^{\infty}$ optimization problem and design a mixed H$^{2}$/$H^{\infty}$ controller. Using the proposed method, mixed H$^{2}$/$H^{\infty}$ controller for underwater vehicle with time delay and parameter variations are designed. Simulations of a design example with hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.t performance.ance.

  • PDF

$H_{2}$/$H_{\infty}$ 강인제어기 설계에 관한 연구-다항식 접근방법 (A study on the design of $H_{2}$/$H_{\infty}$ robust controller-polynomial approach)

  • 박승규;송대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.751-753
    • /
    • 1996
  • The $H_{2}$/$H_{\infty}$ robust controller is designed by using polynomial approach. This controller can minimise a $H_{2}$ norm of error under the fixed bound of $H_{\infty}$ norm of mixed sensitivity function by employing the Youla parameterization and using polynomial approach at the same time. It is easy to apply this controller to adaptive system.

  • PDF

혼합강도 $H_{\infty}$ 제어기법을 이용한 강인한 부하주파수 제어기 설계 (Design of Robust Load Frequency Controller using Mixed Sensitivity based $H_{\infty}$ norm)

  • 정형환;김상효;이정필;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.88-98
    • /
    • 2000
  • In this paper, a robust controller using $H_{\infty}$ control theory has been designed for the load frequency control of interconnected 2-area power system. The main advantage of the proposed $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Representation of uncertainties is modeled by multiplicative uncertainly. In the mixed sensitivity problems, disturbance attenuation and uncertainty of the system is treated simultaneously. The robust stability and the performance of model uncertainties are represented by frequency weighted transfer function. The design of load frequency controller for each area was based on state-space approach. The comparative computer simulation results for the proposed controller and the conventional techniques such as the optimal control and the PID one were analyzed at the additions of various disturbances. Their deviation magnitude of frequency and tie line power flow at each area were mainly evaluated. Also the testing results of robustness for the cases that the perturbations of the all parameters of power system were amounted to about 20% were introduced. It was approved that the resultant performances of the proposed $H_{\infty}$ controller with mixed sensitivity were more robust and stable than the one of conventional controllers.

  • PDF

수중운동체의 $H_\infty$ 심도제어기 설계 ($H_\infty$ Depth Controller Design for Underwater Vehicles)

  • 이만형;정금영;김인수;주효남;양승윤
    • 제어로봇시스템학회논문지
    • /
    • 제6권5호
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

변수 불확실성을 가지는 특이시스템의 강인 비약성 $H_{\infty}$ 출력궤환 제어 (Robust Non-Fragile $H_{\infty}$ Output Feedback Control for Descriptor Systems with Parameter Uncertainties)

  • 김종해
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.389-395
    • /
    • 2007
  • In this paper, we consider the robust non-fragile $H_{\infty}$ output feedback controller design method for uncertain descriptor systems with feedback and observer gain variations. The existence condition of observer-based robust and non-fragile $H_{\infty}$ output feedback controller and the controller design method are Presented on the basis of linear matrix inequality approach. The proposed robust non-fragile $H_{\infty}$ output feedback controller guarantees asymptotic stability, non-fragility, $H_{\infty}$ norm bound within a prescribed level in spite of disturbance, parameter uncertainty, and feedback/observer gain variations.

불확실한 시스템에 대한 2-자유도 $H_\infty$ 제어기의 성능해석 (Performance Analyses of TDF $H_\infty$ Controllers for Uncertain Systems)

  • 강영중;이군석;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.477-481
    • /
    • 1993
  • The aim of this paper is to analyze via computer simulation the robust performance of TDF(Two Degree of Freedom) H.$_{\infty}$ controller for uncertain systems having parameter uncertainty. We apply the TDF H$_{\infty}$ controller to autopilot design. We evaluate the robust performance of the TDF H$_{\infty}$ controller for uncertain systems and present the guaranteed bound of robust performance via computer simulation.on.

  • PDF