• Title/Summary/Keyword: Robust beamforming

Search Result 42, Processing Time 0.016 seconds

Adaptive Beamforming Technique of Eigen-space Smart Antenna System (고유공간 스마트 안테나 시스템의 적응 빔형성 기술)

  • 김민수;이원철;최승원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.989-997
    • /
    • 2002
  • This paper presents a new technique that enhances the performance of the smart antenna system especially in signal environments of wide angular spread by adopting a weight vector obtained from two eigenvectors of theautocovariance matrix of the received data. While the conventional beamformingtechnique employs only one eigenvector corresponding to the largest eigenvalue, the proposed algorithm uses two eigenvectors corresponding to the largest and second largest eigenvalue in such a way that it can be robust enough to the signal environments of wide angular spread. An efficient adaptive procedure is shown to verify that the optimal weight vector consisting of the two eigenvectors is obtained with a reasonable complexity(3.5$N_2$+ 12N) and accuracy. it is also shown in this paper that the numerical results obtained from the proposed adaptive procedure well agree with those obtained from a commercial tool computing the eigen-function of MATLABTM.

Time-delay Estimation Method for Performance Enhancement of Underwater Source Localization using Doublet Array (Doublet 센서배열의 수중음원 위치 추정 성능 향상을 위한 시간지연 추정 기법)

  • Sim, Min-Seop;Lee, Ji-Hyeog;Lee, Hyeong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.69-76
    • /
    • 2020
  • The sound signal radiated from an underwater source is received by the hydrophone of the system, including multi-path time-delay and multi-path signal by sea surface and bottom reflection. The system using a time-delay between received signals for the source localization shows performance degradation due to incoherence by the multi-path propagation environment and the disturbance of a marine environment. Various types of array and signal processing have been used for robust source range and bearing estimation in this environment. In this paper, we use a line array composed of doublet array and an estimated time-delay correction method for robust localization performance in a multi-path propagation environment. Three doublet arrays are located on the same line, and the time-delay between signals received on each doublet array is estimated in a two-step procedure. The estimated time-delay value is obtained by the cross-correlation function and corrected by the interaction formula between the center-frequency of received signal and the geometry of the array with respect to aperture. By this proposed procedure, the range and bearing of source from array were calculated. In order to confirm the validity of the proposed method and array, we simulated localization and estimation using the Monte-Carlo method.