• Title/Summary/Keyword: Robust Term

Search Result 269, Processing Time 0.026 seconds

Robust Nonlinear $H_2$/$H_{\infty}$Control for a Parallel Inverted Pendulum (병렬형 역진자와 비선형 $H_2$/H_{\infty}강인제어)

  • Han, Seong-Ik;Kim, Jong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1065-1074
    • /
    • 2000
  • A robust nonlinear $H_2$/$H_{\infty}$ control method for a parallel inverted pendulum with structured perturbation and dry friction is proposed. By the random input describing function techniques, the nonlinear dry friction is approximated into the quasi-linear system. Introducing the quadratic robustness theorem, the robust $H_2$/$H_{\infty}$ control system is constructed for the quasi-linear perturbed system. But it is difficult to design a controller due to the nonlinear correction term in Riccati equation. With some transformations on the Riccati equation containing nonlinear correction term, the design of the robust nonlinear controller can be done easily. Hence when the stiffness and mass of the parallel inverted pendulum vary in certain ranges, the proposed control scheme has the robustness for both the structured perturbation and dry friction. The results of computer simulation show the effectiveness of our proposed control method.

Robust Nonlinear Multivariable Control for the Hard Nonlinear System with Structured Uncertainty (구조화된 불확실성을 갖는 하드 비선형 시스템에 대한 강인한 다변수 비선형 제어)

  • 한성익;김종식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.128-141
    • /
    • 1998
  • We propose the robust nonlinear controller design methodology for the multivariable system which has hard nonlinearities (Coulomb friction, dead-zone, etc) and the structured real parameter uncertainty. The hard nonlinearity can be linearized by the RIDF technique and structured real parameter uncertainty can be modelled as the sense of Peterson-Hollot's quadratic Lyapunov bound. For this system, we apply the robust QLQG/H$_{\infty}$ control and then can obtain four Riccati equations. Because of the system's nonlinearity, however, one Riccati equation contains the nonlinear correction term that is very difficult to solve numerically, In order to treat this problem, using some transformations to Riccati equations, the nonlinear correction term can be eliminated. Then, only two Riccati equations need to design a controller. Finally, the robust nonlinear controller is synthesized via IRIDF techniques. To test this proposed control method, we consider the direct-drive robot manipulator system that has Coulomb frictions and varying inertia.

  • PDF

Robust control for external input perturbation using second order derivative of universal learning network

  • Ohbayashi, Masanao;Hirasawa, Kotaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.111-114
    • /
    • 1996
  • This paper proposes a robust control method using Universal Learning Network(U.L.N.) and second order derivatives of U.L.N.. Robust control considered here is defined as follows. Even if external input (equal to reference input in this paper) to the system at control stage changes awfully from that at learning stage, the system can be controlled so as to maintain a good performance. In order to realize such a robust control, a new term concerning the perturbation is added to a usual criterion function. And parameter variables are adjusted so as to minimize the above mentioned criterion function using the second order derivative of the criterion function with respect to the parameters.

  • PDF

Nonlinear Modification Scheme for Reducing Cautiousness of Linear Robust Control

  • Maki, Midori;Hagino, Kojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.108-111
    • /
    • 1999
  • In this paper, we develope a composite control law for linear systems with norm-bounded time-varying parameter uncertainties, which consists of a basic linear robust control do-signed so as to generate a desired transient time-response for the worst-case parameter variation and a nonlinear modification term designed so as to reduce cautiousness of the linear robust control in an adaptive manner. The proposed controller is established such that the reduction of cautiousness of the linear robust control is well incorporated into the achievement of a good transient behavior.

  • PDF

Robust Optimization of a Resonant-type Micro-probe Using Gradient Index Based Robust Optimal Design Method (구배 지수에 근거한 강건 최적 설계 기법을 이용한 공진형 미소탐침의 강건 최적화)

  • Han, Jeong-Sam;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1254-1261
    • /
    • 2003
  • In this paper we present a simple and efficient robust optimal design formulation and its application to a resonant-type micro probe. The basic idea is to use the Gradient Index (GI) to improve robustness of the objective and constraint functions. In the robust optimal design procedure, a deterministic optimization for performance of MEMS structures is followed by design sensitivity analysis with respect to uncertainties such as fabrication errors and change of operating conditions. During the process of deterministic optimization and sensitivity analysis, dominant performance and uncertain variables are identified to define GI. The GI is incorporated as a term of objective and constraint functions in the robust optimal design formulation to make both performance and robustness improved. While most previous approaches for robust optimal design require statistical information on design variations, the proposed GI based method needs no such information and therefore is cost-efficient and easily applicable to early design stages. For the micro probe example, robust optimums are obtained to satisfy the targets for the measurement sensitivity and they are compared in terms of robustness and production yield with the deterministic optimums through the Monte Carlo simulation.

  • PDF

Robust, Low Delay Multi-tree Speech Coding at 9.6Kbits/sec (견실, 저지연 멀티트리 9.6Kbits/s 음성부호기에 관한 연구)

  • 우홍체;문병현;이채욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.348-354
    • /
    • 1993
  • In this research, a multi-tree coder at 9.6Kbits/sec using a novel scheme for adaptation of the short-term coefficients is developed. The overall delay of the tree coder is maintained at 2.5 msec(16 samples at the 6.4KHz sampling frequency). This coder produces good quality speech over ideal channels, and it is very robust to channel errors up to a bit error rate (BER) of $10^{-3}$. This robustness is achieved by using a parallel adaptation scheme in combination with the use of a smoothed version of the received excitation sequence for adaptation of the short-term prediction coefficients. For the multi-tree coder, reconstructed output speech is evaluated using signal-to-quantization noise ratios (SNR), segmental SNRs, and informal listening tests.

  • PDF

Implementation of a Robust Speaker Recognition System in Noisy Environment Using AR HMM with Duration-term (지속시간항을 갖는 AR HMM을 이용한 잡음환경에서의 강인 화자인식 시스템 구현)

  • 이기용;임재열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.26-33
    • /
    • 2001
  • Though speaker recognition based on conventional AR HMM shows good performance, its lack of modeling the environmental noise makes its performance degraded in case of practical noisy environment. In this paper, a robust speaker recognition system based on AR HMM is proposed, where noise is considered in the observation signal model for practical noisy environment and duration-term is considered to increase performance. Experimental results, using the digits database from 100 speakers (77 males and 23 females) under white noise and car noise, show improved performance.

  • PDF

Gradient Index Based Robust Optimal Design Method for MEMS Structures (구배 지수에 근거한 MEMS 구조물의 강건 최적 설계 기법)

  • Han, Jeung-Sam;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1234-1242
    • /
    • 2003
  • In this paper we present a simple and efficient robust optimal design formulation for MEMS structures and its application to a resonant-type micro probe. The basic idea is to use the gradient index (GI) to improve robustness of the objective and constraint functions. In the robust optimal design procedure, a deterministic optimization for performance of MEMS structures is followed by design sensitivity analysis with respect to uncertainties such as fabrication errors and change of operating conditions. During the process of deterministic optimization and sensitivity analysis, dominant performance and uncertain variables are identified to define GI. The GI is incorporated as a term of objective and constraint functions in the robust optimal design formulation to make both performance and robustness improved. While most previous approaches for robust optimal design require statistical information on design variations, the proposed GI based method needs no such information and therefore is cost-effective and easily applicable to early design stages. For the micro probe example, robust optimums are obtained to satisfy the targets for the measurement sensitivity and they are compared in terms of robustness and production yield with the deterministic optimums through the Monte Carlo simulation. This method, although shown for MEMS structures, may as well be easily applied to conventional mechanical structures where information on uncertainties is lacking but robustness is highly important.

Robust Observer for Nonlinear Systems with Delayed Output (지연된 출력을 갖는 비선형 시스템의 강인 관측기)

  • Lee, Sungryul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.253-257
    • /
    • 2013
  • This paper proposes the robust observer design for nonlinear systems with delayed output and external disturbance. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the nonlinear error dynamics with time delay can be transformed into the linear one with time delay. Sufficient conditions for existence of a robust observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Robust Adaptive Control of A HexaSlide Type Parallel Manipulator

  • Kim, Jong-Phil;Kim, Sung-Gaun;Ryu, Jeha
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.262-267
    • /
    • 2001
  • Jeha Ryu Department of Mechatronics, Kwangju Institute of Science and Technology This paper presents an application of a robust adaptive control strategy to HexaSlide type six degrees-of-freedom parallel manipulators. The HexaSlide type parallel manipulators are characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. The proposed control law is developed based on a simplified second order system dynamic equation in joint space with uncertain mass, damper, spring, and Coulomb friction terms. These uncertain parameters are updated by an adaptation law that is derived by Lyapunov stability theorem. A robust adaptive control law by using the boundary layer is designed for the purpose of compensating for the neglected dynamic effects of the mobile platform and the six moving links that are modeled as a disturbance term. Experimental results show good and fast tracking performance.

  • PDF