• Title/Summary/Keyword: Robust Robot Control

Search Result 456, Processing Time 0.027 seconds

Autonomous Aero-Robot and Disaster Response

  • Inoue, Koichi;Nakanishi, Hiroaki
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.3-16
    • /
    • 2003
  • After a not-widely-known fact is revealed that Japan is a leading country in production and use of industrial unmanned helicopters, a kind of UAV. The voice command system and the autonomous flight control system with a variety of control algorithms including neural network, robust and adaptive control that have been developed in collaboration between Kyoto University and Yamaha Motor Co., and funded by the Ministry of Education and Science of Japan are described in some detail. Both already-proven and promising future applications of the autonomous unmanned helicopters are given.

  • PDF

$\mu$-Controller Design for Servo Systems Containing Resonance Effects and Coulomb Frictions (공진 효과 및 쿨롱 마찰이 있는 서보 시스템에 대한 $\mu$-제어기 설계)

  • Hwang, In-Hui;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.46-48
    • /
    • 1996
  • In almost all the servo systems, especially for the robot manipulators and numerical control systems, there are resonance effects and nonlinear frictions which should be considered in designing servo controllers. In this paper to compensate friction and track the step-input without steady-state error, the original system is augmented with an integrator and employes $\mu$-Controller design method $\mu$-Controller design method enables to meet not only performance requirements but robust stabilities simultaneously. And there may exist a limit cycles due to interaction between integrator and nonlinear friction. With describing function method, the possibility of limit cycle is checked.

  • PDF

Adaptive Sliding Mode Control for Nonholonomic Mobile Robots with Model Uncertainty and External Disturbance (모델 불확실성과 외란이 있는 이동 로봇을 위한 적응 슬라이딩 모드 제어)

  • Park, Bong-Seok;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1644-1645
    • /
    • 2007
  • This paper proposes an adaptive sliding mode control method for trajectory tracking of nonholonomic mobile robots with model uncertainties and external disturbances. The kinematic model represented by polar coordinates are considered to design a robust control system. Wavelet neural networks (WNNs) are employed to approximate arbitrary model uncertainties in dynamics of the mobile robot. From the Lyapunov stability theory, we derive tuning algorithms for all weights of WNNs and prove that all signals of an adaptive closed-loop system are uniformly ultimately bounded.

  • PDF

Controller Design for Robot Manipulator using Identifier (동정법에 의한 로봇 매니퓰레이터의 제어기 설계)

  • 정상근;박종국
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.9
    • /
    • pp.1040-1049
    • /
    • 1992
  • When the model of control object is not described correctly, ambiguity is often expressed by unknown parameter, In a case that this ambiguity satisfies a certain condition of limit, if robust control method is used, even if model is not correctly discribed, control system can be composed. The characteristic of control based on the variable structure theory is that the influence by ambiguity of system eradicates high-gain feedback. Therefore in this paper, VSS indentifier is proposed. Transformation of control input producing control system in sliding mode actually reflects influence of ambiguity unknown parameter of control object. If useful information is out from transformation input by a few times of operation, proper identify mechanism is selected and this information is used, to decide the unknown parameter is possible. So more effective controller was composed by addition of the proposed identifier to the unknown parameter identifier of robot manipulator.

  • PDF

Robust Control of the Robotic Systems Using Self Recurrent Wavelet Neural Network via Backstepping Design Technique (벡스테핑 기법 기반 자기 회귀 웨이블릿 신경 회로망을 이용한 로봇 시스템의 강인 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2711-2713
    • /
    • 2005
  • This paper presents the tracking control method of robotic systems with uncertainties using self recurrent wavelet neural network (SRWNN) via the backstepping design technique. The SRWNN is used as the uncertainty observer of the robotic systems. The adaptation laws for weights of the robotic systems are induced from the Lyapunov stability theorem, which are used for on-line controlling robotic systems. Computer simulations of a three-link robot manipulator with uncertainties verify the validity of the proposed SRWNN controller.

  • PDF

Development of Omnidirectional Ranging System Based on Structured Light Image (구조광 영상기반 전방향 거리측정 시스템 개발)

  • Shin, Jin;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.479-486
    • /
    • 2012
  • In this paper, a ranging system is proposed that is able to measure 360 degree omnidirectional distances to environment objects. The ranging system is based on the structured light imaging system with catadioptric omnidirectional mirror. In order to make the ranging system robust against environmental illumination, efficient structured light image processing algorithms are developed; sequential integration of difference images with modulated structured light and radial search based on Bresenham line drawing algorithm. A dedicated FPGA image processor is developed to speed up the overall image processing. Also the distance equation is derived in the omnidirectional imaging system with a hyperbolic mirror. It is expected that the omnidirectional ranging system is useful for mapping and localization of mobile robot. Experiments are carried out to verify the performance of the proposed ranging system.

Omnidirectional Distance Measurement based on Active Structured Light Image (능동 구조광 영상기반 전방향 거리측정)

  • Shin, Jin;Yi, Soo-Yeong;Hong, Young-Jin;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.751-755
    • /
    • 2010
  • In this paper, we proposed an omnidirectional ranging system that is able to obtain $360^{\circ}$ all directional distances effectively based on structured light image. The omnidirectional ranging system consists of laser structured light source and a catadioptric omnidirectional camera with a curved mirror. The proposed integro-differential structured light image processing algorithm makes the ranging system robust against environmental illumination condition. The omnidirectional ranging system is useful for map-building and self-localization of a mobile robot.

Robust Automatic Parking without Odometry using an Evolutionary Fuzzy Logic Controller

  • Ryu, Young-Woo;Oh, Se-Young;Kim, Sam-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.434-443
    • /
    • 2008
  • This paper develops a novel automatic parking algorithm based on a fuzzy logic controller with the vehicle pose for the input and the steering rate for the output. It localizes the vehicle by using only external sensors - a vision sensor and ultrasonic sensors. Then it automatically learns an optimal fuzzy if-then rule set from the training data, using an evolutionary fuzzy system. Furthermore, it also finds the green zone for the ready-to-reverse position in which parking is possible just by reversing. It has been tested on a 4-wheeled Pioneer mobile robot which emulates the real vehicle.

Compensation of the Uncertain Time Delays Using a Predictive Controller (예측제어기를 이용한 불확실한 시간지연 보상)

  • 허화라;이장명
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.13-16
    • /
    • 2002
  • In this paper, we newly propose a predictor model which is a method to overcome the time-varying delay in a system and we verify that the predictor model is well suited for the time-delayed system and improves the stability a lot through the experiments. The proposed predict compensator compensates uncertain time delays and minimizes variance of system performance. Therefore it is suitable for the control of uncertain systems and nonlinear systems that are difficult to be modeled. The simulation conditions are set for the cases of various input time delays and simulations are applied for the 2-axis robot arms which are drawing a circle on the plane. Conclusively, the proposed predict compensator represents stable properties regardless of the time delay. As a future research, we suggest to develope a robust control algorithm to compensate the random time delay which occurs in the tole-operated systems.

  • PDF

A novel design method for the velocity controller of DC servo motor (새로운 DC 서어보 모우터 속도제어기 설계에 관한 연구)

  • 장태규;변증남
    • 전기의세계
    • /
    • v.30 no.8
    • /
    • pp.501-508
    • /
    • 1981
  • A novel and simple method of designing the current feedback loop for the velocity controller of an armature controlled dc servo motor is presented. Instead of constructing the usual tight current feedback loop, a loose current feedback loop is suggested in this paper. More specifically, the armature current is not limited to a fixed constant value, but instead the upper bound value is allowed to be variable along with the present motor speed. The control system designed in this manner shows that the motor under control is robust to a wide range of loading conditions and yields a more rapid transient characteristics which is verified experimentally by applying the method in the design of the controller for an Industrial robot.

  • PDF