• Title/Summary/Keyword: Robust PID Control

Search Result 216, Processing Time 0.043 seconds

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;곽이구
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

Improvement of Dynamic Characteristic of LDM by Using I-PD Algorithm (외란에 강인한 I-PD 제어에 의한 LDM의 동특성 개선)

  • Kim, S.W.;Baek, S.H.;Yoon, S.Y.;Myung, N.Y.;Chang, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.754-756
    • /
    • 2000
  • In this paper, the I-PD control algorithm using the coefficient diagram method(CDM) controller design of the Linear DC Motor(LDM) is presented. Recently LDM has been used to obtain the fine results of the dynamic characteristic for straightly moving condition. The I-PD control algorithm has a robust response to force disturbance. The effectiveness of I-PD is shown by simulations and comparison with PID.

  • PDF

Fuzzy-PWM control for adjustment of power rate of a multiple point temperature controller (다점 온도 제어 장치의 power 공급율 조정을 위한 fuzzy-PWM제어)

  • 이장명;윤종보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.80-92
    • /
    • 1997
  • This research focuses onan efficient control method of temperature for multiple points using only one processor. For a yarn production system, the surface temperature control of heaters are very important for quality control. Therefore, we designed a temperature controller for a draw and twist machine and applied Fuzzy-PWM algorithm to the controller. If we use a processor for the temperature control of multiple points with the conventional ON/OFF control, the control performance of the system becomes poor. To overcome these problems, we developed a new Fuzzy-PWM algorithm for the adjustment of power rate to the heaters in the conventional ON/OFF control. It is shown that this algorithm has the same effects as the PID algorithm for the temperature control of each point. The proposed algorithm is robust against the production condition and environment such as the reference temperature and the thickness of yarn, since the power rate to the heater is adjusted by Fuzzy Rules derived from the values of the reference termperatureand the thickness of yarn. To obtain optimal Fuzzy rulees, the control simulations are perfodrmed through the modelling of the heater and simulation of Fuzzy rules. This algorithm is applied for the multiple pont temperature controller and showed satisfactory performance.

  • PDF

A High Performance Exciter Control System of Synchronous Generator using Direct Instantaneous Voltage Control Method (직접 순시전압 제어기법에 의한 동기발전기의 고성능 여자 제어시스템)

  • Lee, Dong-Hee;Liang, Jianing;Lee, Sang-Hoon;Ahn, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.68-74
    • /
    • 2007
  • This paper presents a simple, robust excitation control system for synchronous generator using direct instantaneous voltage control(DIVC) method DIVC method can operate as maximum dynamics of power conversion system without any control gains such as PID controller. And the transient overshoot of generator voltage can be suppressed with a simple time constant. The proposed control scheme is verified by the computer simulation and experimental results in prototype generation system.

A Study on Optimal Working Path Control of Seven Axes Vertical Type Robot with Translation Joint for Triming Working Automation in Forming Process (단조공정 트리밍작업 자동화를 위한 병진관절을 갖는 7축 다관절 로봇의 최적 작업경로제어에 관한 연구)

  • Kim, Min-Seong;Choi, Min-Hyuk;Bae, Ho-Young;Im, Oh-Deuk;Kang, Jung-Suk;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.53-62
    • /
    • 2018
  • This study propose a new approach to control the optimal working path of vertical type articulated robot with translation joint for trimming working process automation in forging manufacturing process. The basic structure of the proposed robotic joints controller consists of a Proportional-Intergral controller and a Proportional-Derivative controller in parallel. The proposed control scheme takes advantage of the properties of the fuzzy PID controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator. The results illustrates that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. The reliability is varified by simulation test for vertical type s articulated robot with seven joints including one trqanslation joint.

The Control for the 2-Axis Stabilized Gimbal using the PI-LEAD Algorithm (PI-LEAD 알고리즘을 이용한 2축 안정화 짐벌 시스템 제어)

  • Lee, Jin-Bok;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.117-123
    • /
    • 2013
  • Since the nonlinear factors such as friction in a mechanical servo system can't be easily measured nor estimated accurately. Therefore, it is difficult to compensate friction correctly. Friction makes a significant error in a 2-axis stabilized gimbal system and finally fails to reach the ultimate control performance goals. To solve these problems, lots of studies on the control methods applying observer have been performed. However, these methods can be used in specific conditions and are limited to apply them to the accurate 2-axis stabilized gimbal system in military sector. This paper deals with the PI-LEAD algorithm which is modified with a general and robust PID algorithm, proves the effect of the algorithm through modeling and simulation, and verifies the performance by applying the algorithm to the real 2-axis stabilized system. It is verified through the performance test that the PI-LEAD algorithm minimizes the error caused by friction and meets requirements of the accurate servo system.

Position Synchronous Control of a Two-Axes Driving System by H$\infty$ Approch (H$\infty$ 제어기법을 이용한 2축 구동 시스템의 위치동기제어)

  • Byun, Jung-Hoan;Yeo, Dong-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.192-198
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers and one synchronous controller. The speed controllers based on PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order that speed response of the second axis corresponds with one of first axis. Especially, considering to model uncertainties of each axis, the synchronous controller has been designed using H$\infty$ control theory. The controller eliminates the synchronous error by controlling speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

Design of Robust Controller for Systems with Time Delay (지연시간을 갖는 계통에 대한 강인한 제어기 설계)

  • 박귀태;이기상;김성호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.997-1005
    • /
    • 1990
  • Integral Error and State Feedback (IESF) controller which incorporates state feedback as a modern control scheme and integral action as a classical control scheme has better performance than that of conventional PID controller in linear time invariant system. But the structure of the IESF controller requires all the state variables of the system and is applicable only to pole assignable linear time invariant systems without time delay. Many industrial processes have large time delay and it is impossible to directly apply IESF control scheme to those processes. In this paper, a new controller structure, Modified Integral Error and State Feedback (MIESF) has been suggested in order to effectively control processes having time delay and its performance has been analyzed and its effectiveness has also been confirmed. As the proposed controller uses output feedback scheme based on integral error and state feedback (IESF) method, it can be simply designed by pole assignment algorithm irrespective of the order of the process. The MIESF controller can follow setpoint changes without overshoot. It is robuster than conventional Smith-Predictor plus PI(D) controller in case of occurring time delay mismatch and extra parameter mismatches between the process and the model. It can enhance control performance by intentional time delay mismatch.

  • PDF

Design Of Fuzzy Controller for the Steam Temperature Process in the Coal Fired Power Plant

  • Shin, Sang Doo;Kim, Yi-Gon;Lee, Bong Kuk;Bae, Young Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.187-192
    • /
    • 2004
  • In this paper, we proposed the method to design fuzzy controller using the experience of the operating expert and experimental numeric data for the robust control about the noise and disturbance instead of the traditional PID controller for the main steam temperature control of the thermal power plant. The temperature of main steam temperature process has to be controlled uniformly for the stable electric power output. The process has the problem of the hunting for the cases of various disturbances. In that case, the manual action of the operator happened to be introduced in some cases. We adopted the TSK (Takagi-Sugeno-Kang) model as the fuzzy controller and designed the fuzzy rules using the informations extracted directly from the real plant and various operating condition to solve the above problems and to apply practically. We implemented the real fuzzy controller as the Function Block module in the DCS(Distributed Control System) and evaluated the feasibility through the experimental results of the simulation.

Hardware-In-The-Loop Simulation (HILS) Based Design and Robustness Evaluation of an Intelligent Gantry Crane System

  • ;Jalani, Jamaludin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1729-1734
    • /
    • 2005
  • The use of gantry crane systems for transporting payload is very common in industrial application. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. To overcome this problem, this paper describes development of an intelligent gantry crane system based on the mechatronic design. A lab-scale gantry crane is designed and then its intelligent controllers are developed. Fuzzy logic controllers are adopted, designed and implemented for controlling payload position as well as the swing angle of the gantry crane. The performance of the intelligent gantry crane system is evaluated on a hardware-in-the-loop simulation (HILS) environment. Moreover robustness of the proposed system is also evaluated. The result shows that the intelligent gantry crane system designed based on the mechatronic design approach has better performance compared with the automatic gantry crane system controlled by classical PID controllers. Moreover simulation result shows that the intelligent gantry crane system is more robust to parameter variation than the automatic gantry crane system.

  • PDF