• Title/Summary/Keyword: Robust Key Point

Search Result 34, Processing Time 0.019 seconds

A Mesh Watermarking Using Patch CEGI (패치 CEGI를 이용한 메쉬 워터마킹)

  • Lee Suk-Hwan;Kwon Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.67-78
    • /
    • 2005
  • We proposed a blind watermarking for 3D mesh model using the patch CEGIs. The CEGI is the 3D orientation histogram with complex weight whose magnitude is the mesh area and phase is the normal distance of the mesh from the designated origin. In the proposed algorithm we divide the 3D mesh model into the number of patch that determined adaptively to the shape of model and calculate the patch CEGIs. Some cells for embedding the watermark are selected according to the rank of their magnitudes in each of patches after calculating the respective magnitude distributions of CEGI for each patches of a mesh model. Each of the watermark bit is embedded into cells with the same rank in these patch CEGI. Based on the patch center point and the rank table as watermark key, watermark extraction and realignment process are performed without the original mesh. In the rotated model, we perform the realignment process using Euler angle before the watermark extracting. The results of experiment verify that the proposed algorithm is imperceptible and robust against geometrical attacks of cropping, affine transformation and vertex randomization as well as topological attacks of remeshing and mesh simplification.

Mature Market Sub-segmentation and Its Evaluation by the Degree of Homogeneity (동질도 평가를 통한 실버세대 세분군 분류 및 평가)

  • Bae, Jae-ho
    • Journal of Distribution Science
    • /
    • v.8 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • As the population, buying power, and intensity of self-expression of the elderly generation increase, its importance as a market segment is also growing. Therefore, the mass marketing strategy for the elderly generation must be changed to a micro-marketing strategy based on the results of sub-segmentation that suitably captures the characteristics of this generation. Furthermore, as a customer access strategy is decided by sub-segmentation, proper segmentation is one of the key success factors for micro-marketing. Segments or sub-segments are different from sectors, because segmentation or sub-segmentation for micro-marketing is based on the homogeneity of customer needs. Theoretically, complete segmentation would reveal a single voice. However, it is impossible to achieve complete segmentation because of economic factors, factors that affect effectiveness, etc. To obtain a single voice from a segment, we sometimes need to divide it into many individual cases. In such a case, there would be a many segments to deal with. On the other hand, to maximize market access performance, fewer segments are preferred. In this paper, we use the term "sub-segmentation" instead of "segmentation," because we divide a specific segment into more detailed segments. To sub-segment the elderly generation, this paper takes their lifestyles and life stages into consideration. In order to reflect these aspects, various surveys and several rounds of expert interviews and focused group interviews (FGIs) were performed. Using the results of these qualitative surveys, we can define six sub-segments of the elderly generation. This paper uses five rules to divide the elderly generation. The five rules are (1) mutually exclusive and collectively exhaustive (MECE) sub-segmentation, (2) important life stages, (3) notable lifestyles, (4) minimum number of and easy classifiable sub-segments, and (5) significant difference in voices among the sub-segments. The most critical point for dividing the elderly market is whether children are married. The other points are source of income, gender, and occupation. In this paper, the elderly market is divided into six sub-segments. As mentioned, the number of sub-segments is a very key point for a successful marketing approach. Too many sub-segments would lead to narrow substantiality or lack of actionability. On the other hand, too few sub-segments would have no effects. Therefore, the creation of the optimum number of sub-segments is a critical problem faced by marketers. This paper presents a method of evaluating the fitness of sub-segments that was deduced from the preceding surveys. The presented method uses the degree of homogeneity (DoH) to measure the adequacy of sub-segments. This measure uses quantitative survey questions to calculate adequacy. The ratio of significantly homogeneous questions to the total numbers of survey questions indicates the DoH. A significantly homogeneous question is defined as a question in which one case is selected significantly more often than others. To show whether a case is selected significantly more often than others, we use a hypothesis test. In this case, the null hypothesis (H0) would be that there is no significant difference between the selection of one case and that of the others. Thus, the total number of significantly homogeneous questions is the total number of cases in which the null hypothesis is rejected. To calculate the DoH, we conducted a quantitative survey (total sample size was 400, 60 questions, 4~5 cases for each question). The sample size of the first sub-segment-has no unmarried offspring and earns a living independently-is 113. The sample size of the second sub-segment-has no unmarried offspring and is economically supported by its offspring-is 57. The sample size of the third sub-segment-has unmarried offspring and is employed and male-is 70. The sample size of the fourth sub-segment-has unmarried offspring and is not employed and male-is 45. The sample size of the fifth sub-segment-has unmarried offspring and is female and employed (either the female herself or her husband)-is 63. The sample size of the last sub-segment-has unmarried offspring and is female and not employed (not even the husband)-is 52. Statistically, the sample size of each sub-segment is sufficiently large. Therefore, we use the z-test for testing hypotheses. When the significance level is 0.05, the DoHs of the six sub-segments are 1.00, 0.95, 0.95, 0.87, 0.93, and 1.00, respectively. When the significance level is 0.01, the DoHs of the six sub-segments are 0.95, 0.87, 0.85, 0.80, 0.88, and 0.87, respectively. These results show that the first sub-segment is the most homogeneous category, while the fourth has more variety in terms of its needs. If the sample size is sufficiently large, more segmentation would be better in a given sub-segment. However, as the fourth sub-segment is smaller than the others, more detailed segmentation is not proceeded. A very critical point for a successful micro-marketing strategy is measuring the fit of a sub-segment. However, until now, there have been no robust rules for measuring fit. This paper presents a method of evaluating the fit of sub-segments. This method will be very helpful for deciding the adequacy of sub-segmentation. However, it has some limitations that prevent it from being robust. These limitations include the following: (1) the method is restricted to only quantitative questions; (2) the type of questions that must be involved in calculation pose difficulties; (3) DoH values depend on content formation. Despite these limitations, this paper has presented a useful method for conducting adequate sub-segmentation. We believe that the present method can be applied widely in many areas. Furthermore, the results of the sub-segmentation of the elderly generation can serve as a reference for mature marketing.

  • PDF

Development of an Automatic 3D Coregistration Technique of Brain PET and MR Images (뇌 PET과 MR 영상의 자동화된 3차원적 합성기법 개발)

  • Lee, Jae-Sung;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Park, Kwang-Suk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.414-424
    • /
    • 1998
  • Purpose: Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Materials and Methods: Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET to coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Results: Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Conclusion: Our refined technique could practically enhance the performance of automated three dimensional coregistration.

  • PDF

A PLS Path Modeling Approach on the Cause-and-Effect Relationships among BSC Critical Success Factors for IT Organizations (PLS 경로모형을 이용한 IT 조직의 BSC 성공요인간의 인과관계 분석)

  • Lee, Jung-Hoon;Shin, Taek-Soo;Lim, Jong-Ho
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.207-228
    • /
    • 2007
  • Measuring Information Technology(IT) organizations' activities have been limited to mainly measure financial indicators for a long time. However, according to the multifarious functions of Information System, a number of researches have been done for the new trends on measurement methodologies that come with financial measurement as well as new measurement methods. Especially, the researches on IT Balanced Scorecard(BSC), concept from BSC measuring IT activities have been done as well in recent years. BSC provides more advantages than only integration of non-financial measures in a performance measurement system. The core of BSC rests on the cause-and-effect relationships between measures to allow prediction of value chain performance measures to allow prediction of value chain performance measures, communication, and realization of the corporate strategy and incentive controlled actions. More recently, BSC proponents have focused on the need to tie measures together into a causal chain of performance, and to test the validity of these hypothesized effects to guide the development of strategy. Kaplan and Norton[2001] argue that one of the primary benefits of the balanced scorecard is its use in gauging the success of strategy. Norreklit[2000] insist that the cause-and-effect chain is central to the balanced scorecard. The cause-and-effect chain is also central to the IT BSC. However, prior researches on relationship between information system and enterprise strategies as well as connection between various IT performance measurement indicators are not so much studied. Ittner et al.[2003] report that 77% of all surveyed companies with an implemented BSC place no or only little interest on soundly modeled cause-and-effect relationships despite of the importance of cause-and-effect chains as an integral part of BSC. This shortcoming can be explained with one theoretical and one practical reason[Blumenberg and Hinz, 2006]. From a theoretical point of view, causalities within the BSC method and their application are only vaguely described by Kaplan and Norton. From a practical consideration, modeling corporate causalities is a complex task due to tedious data acquisition and following reliability maintenance. However, cause-and effect relationships are an essential part of BSCs because they differentiate performance measurement systems like BSCs from simple key performance indicator(KPI) lists. KPI lists present an ad-hoc collection of measures to managers but do not allow for a comprehensive view on corporate performance. Instead, performance measurement system like BSCs tries to model the relationships of the underlying value chain in cause-and-effect relationships. Therefore, to overcome the deficiencies of causal modeling in IT BSC, sound and robust causal modeling approaches are required in theory as well as in practice for offering a solution. The propose of this study is to suggest critical success factors(CSFs) and KPIs for measuring performance for IT organizations and empirically validate the casual relationships between those CSFs. For this purpose, we define four perspectives of BSC for IT organizations according to Van Grembergen's study[2000] as follows. The Future Orientation perspective represents the human and technology resources needed by IT to deliver its services. The Operational Excellence perspective represents the IT processes employed to develop and deliver the applications. The User Orientation perspective represents the user evaluation of IT. The Business Contribution perspective captures the business value of the IT investments. Each of these perspectives has to be translated into corresponding metrics and measures that assess the current situations. This study suggests 12 CSFs for IT BSC based on the previous IT BSC's studies and COBIT 4.1. These CSFs consist of 51 KPIs. We defines the cause-and-effect relationships among BSC CSFs for IT Organizations as follows. The Future Orientation perspective will have positive effects on the Operational Excellence perspective. Then the Operational Excellence perspective will have positive effects on the User Orientation perspective. Finally, the User Orientation perspective will have positive effects on the Business Contribution perspective. This research tests the validity of these hypothesized casual effects and the sub-hypothesized causal relationships. For the purpose, we used the Partial Least Squares approach to Structural Equation Modeling(or PLS Path Modeling) for analyzing multiple IT BSC CSFs. The PLS path modeling has special abilities that make it more appropriate than other techniques, such as multiple regression and LISREL, when analyzing small sample sizes. Recently the use of PLS path modeling has been gaining interests and use among IS researchers in recent years because of its ability to model latent constructs under conditions of nonormality and with small to medium sample sizes(Chin et al., 2003). The empirical results of our study using PLS path modeling show that the casual effects in IT BSC significantly exist partially in our hypotheses.