• Title/Summary/Keyword: Robust Estimator

Search Result 278, Processing Time 0.024 seconds

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.

Opportunistic Beamforming with Link Anaptation Robust to Imperfect Channel Estimation (기회적 빔포밍 시스템에서 채널 추정에 강인한 링크 적응 기법)

  • Kim, Yo-Han;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.617-626
    • /
    • 2008
  • Opportunistic Beamforming (OBF) offers a way to provide the multiuser diversity even in slow fading channel by using randomly generated beam weights, leading to the substantially reduced feedback in the form of the instantaneous SNR from users. In spite of the advantage of the reduced feedback, the imperfect channel estimation might influence the quality of the estimated SNR and channel scheduler so bad that the selected AMC level would be higher than the achievable rate of the actual channel, resulting the corruption of transmitted packet. In this paper, we propose a conservative link adaptation, where the estimated SNR is scaled down by a conservative factor which minimizes the variance of the maximum difference between the actual channel SNR and the resultant SNR. To support the proposed scheme, we analyze the statistics of the difference of the channel SNR and the estimated SNR. Simulation results show that the introduction of conservative factor achieves more than two-fold performance improvement in the presence of channel estimation error and the fairness of PF scheduler is maintained when the least squared channel estimator is applied.

Frequency Offset Estimation for OFDM-based Cognitive Radio Systems in Non-Gaussian Impulsive Channels (비정규 충격성 잡음에서 OFDM 기반 인지 무선 시스템을 위한 주파수 옵셋 추청 기법)

  • Song, Chong-Han;Lee, Young-Po;Song, Iic-Ho;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1C
    • /
    • pp.48-56
    • /
    • 2011
  • Cognitive radio (CR) systems have received significant interest as a promising solution to the spectral shortage problem through efficient use of the frequency spectrum by opportunistically exploiting unlicensed frequency bands. Orthogonal frequency division multiplexing (OFDM) is widely regarded as a highly promising candidate for CR systems. However, the frequency bands used by CR systems are expected to suffer from non-Gaussian noise, which considerably degrades the performance of the conventional OFDM carrier frequency offset (CFO) estimation schemes. In this paper, robust CFO estimation schemes for OFDM-based CR systems in non-Gaussian channels are proposed. Simulation results demonstrate that the proposed estimators offer robustness and substantial performance improvement over the conventional estimator.

Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard (국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률)

  • Kim, Dae-Hwan;Kim, Taewan;Chu, Yurim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

Teleoperatoin System Control using a Robust State Estimation in Networked Environment (네트웍 환경에서의 강건상태추정을 이용한 원격조작시스템 제어)

  • Jin, Tae-Seok;Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.746-753
    • /
    • 2008
  • In this paper, we introduce the improved control method are communicated between a master and a slave robot in the teleoperation systems. When the master and slave robots are located in different places, time delay is unavoidable under the network environment and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The time delay may cause instability in teleoperation systems especially if those systems include haptic feedback. This paper presents a control scheme based on the estimator with virtual master model in teleoperation systems over the network. As the behavior of virtual model is tracking the one of master model, the operator can control real master robot by manipulating the virtual robot. And LQG/LTR scheme was adopted for the compensation of un-modeled dynamics. The approach is based on virtual master model, which has been implemented on a robot over the network. Its performance is verified by the computer simulation and the experiment.

A Maximum Likelihood Estimator Based Tracking Algorithm for GNSS Signals

  • Won, Jong-Hoon;Pany, Thomas;Eissfeller, Bernd
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents a novel signal tracking algorithm for GNSS receivers using a MLE technique. In order to perform a robust signal tracking in severe signal environments, e.g., high dynamics for navigation vehicles or weak signals for indoor positioning, the MLE based signal tracking approach is adopted in the paper. With assuming white Gaussian additive noise, the cost function of MLE is expanded to the cost function of NLSE. Efficient and practical approach for Doppler frequency tracking by the MLE is derived based on the assumption of code-free signals, i.e., the cost function of the MLE for carrier Doppler tracking is used to derive a discriminator function to create error signals from incoming and reference signals. The use of the MLE method for carrier tracking makes it possible to generalize the MLE equation for arbitrary codes and modulation schemes. This is ideally suited for various GNSS signals with same structure of tracking module. This paper proposes two different types of MLE based tracking method, i.e., an iterative batch processing method and a non-iterative feed-forward processing method. The first method is derived without any limitation on time consumption, while the second method is proposed for a time limited case by using a 1st derivative of cost function, which is proportional to error signal from discriminators of conventional tracking methods. The second method can be implemented by a block diagram approach for tracking carrier phase, Doppler frequency and code phase with assuming no correlation of signal parameters. Finally, a state space form of FLL/PLL/DLL is adopted to the designed MLE based tracking algorithm for reducing noise on the estimated signal parameters.

  • PDF

A study on the performance of three methods of estimation in SEM under conditions of misspecification and small sample sizes (모형명세화 오류와 소표본에서 구조방정식모형 모수추정 방법들 비교: 모수추정 정확도와 이론모형 검정력을 중심으로)

  • Seo, Dong Gi;Jung, Sunho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1153-1165
    • /
    • 2017
  • Structural equation modeling (SEM) is a basic tool for testing theories in a variety of disciplines. A maximum likelihood (ML) method for parameter estimation is by far the most widely used in SEM. Alternatively, two-stage least squares (2SLS) estimator has been proposed as a more robust procedure to address model misspecification. A regularized extension of 2SLS, two-stage ridge least squares (2SRLS) has recently been introduced as an alternative to ML to effectively handle the small-sample-size issue. However, it is unclear whether and when misspecification and small sample sizes may pose problems in theory testing with 2SLS, 2SRLS, and ML. The purpose of this article is to evaluate the three estimation methods in terms of inferences errors as well as parameter recovery under two experimental conditions. We find that: 1) when the model is misspecified, 2SRLS tends to recover parameters better than the other two estimation methods; 2) Regardless of specification errors, 2SRLS produces small or relatively acceptable Type II error rates for the small sample sizes.

Feature-based Non-rigid Registration between Pre- and Post-Contrast Lung CT Images (조영 전후의 폐 CT 영상 정합을 위한 특징 기반의 비강체 정합 기법)

  • Lee, Hyun-Joon;Hong, Young-Taek;Shim, Hack-Joon;Kwon, Dong-Jin;Yun, Il-Dong;Lee, Sang-Uk;Kim, Nam-Kug;Seo, Joon-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.237-244
    • /
    • 2011
  • In this paper, a feature-based registration technique is proposed for pre-contrast and post-contrast lung CT images. It utilizes three dimensional(3-D) features with their descriptors and estimates feature correspondences by nearest neighborhood matching in the feature space. We design a transformation model between the input image pairs using a free form deformation(FFD) which is based on B-splines. Registration is achieved by minimizing an energy function incorporating the smoothness of FFD and the correspondence information through a non-linear gradient conjugate method. To deal with outliers in feature matching, our energy model integrates a robust estimator which discards outliers effectively by iteratively reducing a radius of confidence in the minimization process. Performance evaluation was carried out in terms of accuracy and efficiency using seven pairs of lung CT images of clinical practice. For a quantitative assessment, a radiologist specialized in thorax manually placed landmarks on each CT image pair. In comparative evaluation to a conventional feature-based registration method, our algorithm showed improved performances in both accuracy and efficiency.