• 제목/요약/키워드: Robust Control Strategy

검색결과 191건 처리시간 0.035초

선형 Pushbroom 영상의 에피폴라 기하모델 수립을 위한 간소화된 방법론 (A Simplified Strategy for the Epipolar Geometry of Linear Pushbroom Imagery)

  • 이해연;박원규
    • 대한원격탐사학회지
    • /
    • 제18권2호
    • /
    • pp.97-105
    • /
    • 2002
  • In this paper, we proposed a simplified strategy for the epipolarity of linear pushbroom imagery. The proposed strategy is verified on "Gupta and Hartly" sensor model and "Orun and Natarajan" sensor model. It is also compared with the precise epipolarity model of each sensor model on SPOT and KOMPSAT imagery. For the quantitative analysis, 20 ground control points are used as independent checking points. Based on the results, the accuracy of the proposed strategy is not different from that of the precise epipolarity model of each sensor model (below 0.1 pixels). Under the worst circumstance, the proposed strategy is robust. We can assure that the proposed strategy will show high accuracy on most of sensor models based on the co-linearity equations.

시간지연 제어기법을 이용한 능동 현가시스템에 관한 연구 (A Study on Active Suspension system Using Time Delay Control)

  • 현동길;김진완;장경의;김영배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1219-1224
    • /
    • 2007
  • This is Presents experimental results of a force tracking controller for a quarter-car suspension system. The active suspension system was decomposed into two loops. At the main loop, the desired force signal is calculate by using a standard LQ design process. The Time Delay Control(TDC) design technique is then used to design the force controller such that the desired force signal is achieved in a robust manner when actuator or other plant uncertainties are present. The ADAMS controls module was used to realize the joint simulation of ADAMS and MATLAB, of which the results showed that the TDC strategy is reasonable and feasible.

  • PDF

PZT 액튜에이터를 이용한 유연한 보의 강제 진동제어 (The Forced Vibration Control of a Flexible Beam using PZT Actuator)

  • 윤여흥;임숙정;권대규;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2001
  • Research on the forced vibration control of a flexible GFR composite beam using $\mu$-synthesis is performed on this paper. Modal analysis method and modal coordinates are introduced to obtain the state equations of the structural system. Using these equations, Robust control algorithm using $\mu$-synthesis is adopted to suppress the forced vibration of a flexible beam since the designed controller can considered plant uncertainty and external disturbance. Constant disturbance which is generated by shaking the flexible beam as I's natural frequency is effectively rejected by a PZT actuator. Simulations and experiments are carried out with the designed controller and effectiveness of forced vibration suppression strategy is verified by results.

  • PDF

Nonlinear model predictive control of chemical reactors

  • Lee, Jongku;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.419-424
    • /
    • 1992
  • A robust nonlinear predictive control strategy using a disturbance estimator is presented. The disturbance estimator is comprised of two parts: one is the disturbance model parameter adaptation and the other is future disturbance prediction. RLSM(recurrsive least square method) with a forgetting factor is used to de the uncertain distance model parameters and for the future disturbance prediction, future process outputs and inputs projected by the process model are used. The simulation results for chemical reactors indicate that a substantial improvement in nonlinear predictive control performance is possible using the disturbance estimator.

  • PDF

Robust Active Power Control of a Battery-Supported DSTATCOM to Enhance Wind Generation Power Flow

  • Mahdianpoor, Mohammad;Kiyoumarsi, Arash;Ataei, Mohammad;Hooshmand, Rahmat-Allah
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1357-1368
    • /
    • 2017
  • The lack of controllability over the wind causes fluctuations in the output power of the wind generators (WGs) located at the wind farms. Distribution Static Compensator (DSTATCOM) equipped with Battery Energy Storage System (BESS) can significantly smooth these fluctuations by injecting or absorbing appropriate amount of active power, thus, controlling the power flow of WGs. But because of the component aging and thermal drift, its harmonic filter parameters vary, resulting in performance degradation. In this paper, Quantitative Feedback Theory (QFT) is used as a robust control scheme in order to deactivate the effects of filter parameters variations on the wind power generation power smoothing performance. The proposed robust control strategy of the DSTATCOM is successfully applied to a microgrid, including WGs. The simulation results obviously show that the proposed control technique can effectively smooth the fluctuations in the wind turbines' (WT) output power caused by wind speed variations; taking into account the filter parameters variations (structural parameter uncertainties).

Strategy based PSO for Dynamic Control of UPFC to Enhance Power System Security

  • Mahdad, Belkacem;Bouktir, T.;Srairi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.315-322
    • /
    • 2009
  • Penetration and installation of a new dynamic technology known as Flexible AC Transmission Systems (FACTS) in a practical and dynamic network requires and force expert engineer to develop robust and flexible strategy for planning and control. Unified Power Flow Controller (UPFC) is one of the recent and effective FACTS devices designed for multi control operation to enhance the power system security. This paper presents a dynamic strategy based on Particle Swarm Optimization (PSO) for optimal parameters setting of UPFC to enhance the system loadability. Firstly, we perform a multi power flow analysis with load incrementation to construct a global database to determine the initial efficient bounds associated to active power and reactive power target vector. Secondly a PSO technique applied to search the new parameters setting of the UPFC within the initial new active power and reactive power target bounds. The proposed approach is implemented with Matlab program and verified with IEEE 30-Bus test network. The results show that the proposed approach can converge to the near optimum solution with accuracy, and confirm that flexible multi-control of this device coordinated with efficient location enhance the system security of power system by eliminating the overloaded lines and the bus voltage violation.

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters

  • Saleem, Omer;Rizwan, Mohsin;Khizar, Ahmad;Ahmad, Muaaz
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.835-845
    • /
    • 2019
  • This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.

새로운 슬라이딩 면을 가지는 BLDC 전동기의 위치 제어에 관한 연구 (A Study on the Position Control of BLDC Motor with a New Sliding Surface)

  • 이대식;박수식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.719-727
    • /
    • 1999
  • A robust position control method of the BLDC motor using a new sliding mode control strategy is presented. The main property of variable structure system(VSS) is that the system response is robust and insensitive to parameter variations and external disturbances in the sliding mode. When using the conventional VSS, generally the reaching phase problem occurs, which cause the system response to be sensitive to parameter variations and external disturbances. Furthermore, the speed of response is relatively slow because the swithching surface is a linear function. In order to overcome these problems, VSS with nonlinear sliding surface eliminating reaching phase is proposed. The validity of the proposed scheme is shown by results of simulations of simulations and experiments for the BLDC motor with variable load.

  • PDF

새로운 슬라이딩면을 가지는 BLDC 모터의 위치제어에 관한 연구 (A Study on the Position Control of BLDC Motor with New Sliding Surface.)

  • 이대식;박수식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.80-82
    • /
    • 1997
  • A robust position control system for a BLDC motor using new sliding mode control strategy is presented. Using the new variable structure system, reaching phase problem is eliminated and transient response is largely improved by design of nonlinear sliding surface. The design of the sliding mode position controller is robust in motor parameter, load variations and disturbance. Experiment results show that the proposed approach can achieve accurate position motor tracking in face of large parameter variations and external disturbances, such as a robot arm, etc.

  • PDF

Robust On-line Rotor Time Constant Estimation for Induction Machines

  • Yoo, Anno
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.1000-1007
    • /
    • 2014
  • This paper proposes an on-line rotor time constant estimation strategy for indirect field oriented induction machines. The performance of the indirect field oriented control is dependent especially on the rotor time constant whose value varies according to the temperature. The proposed method calculates the difference between the nominal rotor time constant and the real value from the d- and q-axis integration terms of a proportional integral (PI) current regulator and the demanded voltages of the induction machine to regulate the current in the steady state. Because the proposed strategy has a simple structure and is available in wide speed and torque ranges, the proposed method can be easily used in the industrial field. The effectiveness of proposed strategy is verified with simulations and a 7.5kW experimental setup.