• Title/Summary/Keyword: Robust Adaptive Control

Search Result 537, Processing Time 0.028 seconds

A study on fuzzy control of manipulator with artificial rubber muscles (고무인공근 매니퓰레이터의 퍼지제어에 관한 연구)

  • ;Keio Watanabw;Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1047-1051
    • /
    • 1993
  • A fuzzy controller of a manipulator with artificial rubber muscles is proposed. The fuzzy logic controller as a compensator is described to control the trajectory tracking of a -two link manipulator, where computed torque control method has already assumed to be applied. We shows that the fuzzy compensator with a simple adaptive scaling technique is effective for the robust control when there exist model uncertainties and/or untuned feedback gains. The effectiveness of the proposed control method is illustrated by some experimental results for a circular path tracking.

  • PDF

Servo control of mobile robot using vision system (비젼시스템을 이용한 이동로봇의 서보제어)

  • 백승민;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.540-543
    • /
    • 1997
  • In this paper, a precise trajectory tracking method for mobile robot using a vision system is presented. In solving the problem of precise trajectory tracking, a hierarchical control structure is used which is composed of the path planer, vision system, and dynamic controller. When designing the dynamic controller, non-ideal conditions such as parameter variation, frictional force, and external disturbance are considered. The proposed controller can learn bounded control input for repetitive or periodic dynamics compensation which provides robust and adaptive learning capability. Moreover, the usage of vision system makes mobile robot compensate the cumulative location error which exists when relative sensor like encoder is used to locate the position of mobile robot. The effectiveness of the proposed control scheme is shown through computer simulation.

  • PDF

Power system stabilizer using VSS-MFAC

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.227-230
    • /
    • 1990
  • In this paper we present a variable structure systeme-model following adaptive control (VSS-MFAC) method for an uncertain turbo-generator system which is apt to suffer from the unmodeled parameter uncertainties and the external disturbances. The simulation results for the power system stabilizer(PSS) exhibit robust adaptive model-following properties well in the PSS designed by the proposed VSS-MFAC methodology when a step change in the mechanical torque and a parameter variation is applied.

  • PDF

CANCELLATION OF ECHOES IN TELEPHONE NETWORK WITH THE ADAPTIVE STEP SIZE LATTICE FORM STRUCTURE

  • Benjangkaprasert, Chawalit;Teerasakworakun, Sirirat;Benchapornkullanij, Sirithon;Janchithapongvej, Kanok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.87.2-87
    • /
    • 2002
  • $\textbullet$ Introduction of an adaptive echoes canceller in telephone network and the propose $\textbullet$ The echoes canceller structure $\textbullet$The Lattice/Transversal Joint structure $\textbullet$ The propose robust variable step-size algorithm for lattice form structure $\textbullet$ Performance evaluation $\textbullet$ Simulation results $\textbullet$ Conclusion

  • PDF

An Adaptive Controller based on Zero-gain prediction Approach (영 이득 예측법에 의한 적응 제어기)

  • Yun, Se-Bong;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.73-75
    • /
    • 1987
  • The paper proposes a class of discrete-time adaptive controller which may be applicable without sufficient a priori information. Against choices of the Information, GPC algorithm may seem to be more robust than any other methods reported, but it is the method based on Indirect approach. It is, therefore, reasonable to propose an algorithm via the zero-gain prediction, in which the control parameters are directly estimated and calculated.

  • PDF

An Adaptive Operation Scheme of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 적응운전방식에 관한 연구)

  • Lee, Chee-Woo;Oh, Seok-Gyu;Lee, Ill-Chun;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.44-46
    • /
    • 1997
  • The intrinsic simplicity, ruggedness, and simple power electronic drive requirement of a switched reluctance motor (SRM) make it a viable use for many commercial adjustable speed applications. However, higher torque ripple is one of the few disadvantages of the SRM drives. This paper describes the robust control scheme that permits the phase torque flatted by adaptive reference model.

  • PDF

Direct Missile Bending Frequency Estimation using the Robust Kalman Filter (강인 칼만필터를 이용한 유도탄 기체 진동 주파수 추정기 설계)

  • Ra, Won-Sang;Whang, Ick-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2477-2479
    • /
    • 2005
  • A robust bending frequency tracker is proposed to design the adaptive notch filter which removes the time-varying missile structural modes from the sensor measurements. To do this, the state-space form of a bending frequency model is derived under the assumption that the bending signal could be described as the lightly damped sinusoid. Since the resultant bending frequency model contains the parametric uncertainties in the measurement matrix, the design problem of bending frequency tracker is tackled by applying the robust Kalman filter to the model. This technique could be easily expanded to the multiple frequencies case because it newly illuminates the bending frequency tracking problem in view of general state estimation.

  • PDF

Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations (파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Kim, Seoung-Beom;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF

A Robust Control of PM Synchronous Motor Using Accelerating Torque Feedback (가속 토오크 궤환을 이용한 영구자석 동기전동기의 강인제어)

  • Chung, Se-Kyo;Kim, Chang-Gyun;Park, Hee-Jung;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.571-573
    • /
    • 1996
  • A robust control technique of the PM synchronous motor is presented using an accelerating torque feedback. The accelerating torque is estimated by using an adaptive torque observer and then this estimated torque is controlled by a VSC technique. By employing the proposed torque control, the speed control performance of the motor is improved and the load independency can be realized. The simulations carried out for the PM synchronous motor to verily the effectiveness of the proposed control.

  • PDF

Active Trajectory Tracking Control of AMR using Robust PID Tunning

  • Tae-Seok Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_1
    • /
    • pp.753-758
    • /
    • 2024
  • Trajectory tracking of the AMR robot is one research for the AMR robot navigation. For the control system of the Autonomous mobile robot(AMR) being in non-honolomic system and the complex relations among the control parameters, it is d ifficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive tracking controller based on the PID for AMR robot trajectory tracking. The method uses a non-linear model of AMR robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven non-holonomic AMR robot is carried out in the velocity and orientation tracking control of the non-holonomic AMR. The simulation results of wheel type AMR robot platform show that the proposed controller is more robust than the conventional back-stepping controller to show the effectiveness of the proposed algorithm.