• 제목/요약/키워드: Robust ${\mathfrak{H}}_{\infty}$ control

검색결과 3건 처리시간 0.018초

이산시간 상태지연 시스템을 위한 ℋ_/ℋ 고장검출 및 분리 (ℋ_/ℋ Fault Detection and Isolation for Discrete-Time Delayed Systems)

  • 지성철;이호재
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.960-966
    • /
    • 2011
  • In this paper, an $\mathfrak{H}$_/$\mathfrak{H}_{\infty}$ fault detection and isolation (FDI) observer design problem is investigated for discrete-time delayed systems. To that end, a bank consisting of the sensor's number of observers is introduced. Each residual should be sensitive to a certain partial group of faults, but robust against the disturbance as far as possible. We formulate this multiobjective FDI problem as $\mathfrak{H}$_/$\mathfrak{H}_{\infty}$ observers design problem. Sufficient design condition is expressed as iterative linear matrix inequalities. The fault is then detected and isolated by evaluating the residuals through an FDI decision logic. A computer simulation is provided for verification of the proposed technique.

대형급 무인잠수정의 임무의 중요성에 따른 목표 경로점 선정 및 제어를 위한 T-S 퍼지모델 기반 강인 ℋ 제어기 설계 (Allocations and Robust ℋ Fuzzy Control for Waypoints Tracking of Large Displacement Unmanned Underwater Vehicles)

  • 강형빈;이호재;김성훈;박호규
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.402-408
    • /
    • 2017
  • This paper deals with a robust ${\mathfrak{H}}_{\infty}$ controller design problem for waypoints tracking of large displacement unmanned underwater vehicles (LDUUVs) in Takagi-Sugeno fuzzy form. The LDUUV model uses a rudder to control its horizontal motion. We determine the order of waypoints based on their priorities and consider only surge force. A fuzzy controller in state-feedback form is taken and its design condition of is represented in terms of linear matrix inequalities. A numerical simulation is included to show the effectiveness of the theoretical development.

정적 출력궤환 기반 강인 고장포용 제어기 설계 (Static Output-Feedback-Based Robust Fault Tolerant Controller Design)

  • 지성철;문지현;이호재
    • 제어로봇시스템학회논문지
    • /
    • 제19권7호
    • /
    • pp.587-591
    • /
    • 2013
  • This paper addresses the robust fault tolerant controller design problems of static output systems with disturbance. The fault is expressed by the abrupt chattering of system parameters. The design conditions are derived in terms of linear matrix inequalities and linear matrix equalities. An illustrative example is provided to verify performances of the proposed controller.