• Title/Summary/Keyword: Robotic testing

Search Result 35, Processing Time 0.024 seconds

TRACKING LIFT-PATHS OF A ROBOTIC TOWERCRANE WITH ENCODER SENSORS

  • Suyeul Park;Ghang, Lee;Joonbeom cho;Sungil Hham;Ahram Han;Taekwan Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.250-256
    • /
    • 2009
  • This paper presents a robotic tower-crane system using encoder and gyroscope sensors as path tracking devices. Tower crane work is often associated with falling accidents and industrial disasters. Such problems often incur a loss of time and money for the contractor. For this reason, many studies have been done on an automatic tower crane. As a part of 5-year 23-million-dollar research project in Korea, we are developing a robotic tower crane which aims to improve the safety level and productivity. We selected a luffing tower crane, which is commonly used in urban construction projects today, as a platform for the robotic tower crane system. This system comprises two modules: the automated path planning module and the path tracking module. The automated path planning system uses the 3D Cartesian coordinates. When the robotic tower crane lifts construction material, the algorithm creates a line, which represents a lifting path, in virtual space. This algorithm seeks and generates the best route to lift construction material while avoiding known obstacles from real construction site. The path tracking system detects the location of a lifted material in terms of the 3D coordinate values using various types of sensors including adopts encoder and gyroscope sensors. We are testing various sensors as a candidate for the path tracking device. This specific study focuses on how to employ encoder and gyroscope sensors in the robotic crane These sensors measure a movement and rotary motion of the robotic tower crane. Finally, the movement of the robotic tower crane is displayed in a virtual space that synthesizes the data from two modules: the automatically planned path and the tracked paths. We are currently field-testing the feasibility of the proposed system using an actual tower crane. In the next step, the robotic tower crane will be applied to actual construction sites with a following analysis of the crane's productivity in order to ascertain its economic efficiency.

  • PDF

Robot Software Framework using Robot Operation System(ROS2) based on Behavior Tree

  • Sangho Lee;Hyejin Chang;Seulgi Jeon;Janghwan Kim;R. Young Chul, Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.134-141
    • /
    • 2023
  • As robotic technology expands into various fields, robots need to execute some complicated tasks in diverse environments. However, the previous robotic software solutions were limited to independent systems. We can not adapt to diverse functionalities and environments. This makes it hard to provide rapid and effective services and leads to costs and losses in the development process. To overcome these problems, we propose a robot software framework with behavior trees based on ROS2. This framework simplifies complex robot behaviors through behavior trees and makes it easy to modify, extend, and reuse robot behaviors. Furthermore, ROS2 standardizes connections between software modules, enhances the robot's flexibility, and enables independent development and testing of software. Our framework aims to provide a foundation for high-quality robot service provision by supporting the modularity, reusability, independent development, and testing required by intelligent robots that need to provide services in various environments.

Development of Mobile Robot Systems for Automatic Diagnosis of Boiler Tubes in Fossil Power Plants and Large Size Pipelines (화력발전소 보일러 튜브 및 대형 유체수송관 자동 진단을 위한 이동로봇 시스템 개발)

  • Park, Sang-Deok;Jeong, Hee-Don;Lim, Zhong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.254-260
    • /
    • 2002
  • In this study, two types of mobile robotic systems using NDT (Non-destructive testing) method are developed for automatic diagnosis of the boiler tubes and large size pipelines. The developed mobile robots crawl the outer surface of the tubes or pipelines and detect in-pipe defects such as pinholes, cracks and thickness reduction by corrosion and/or erosion using EMAT (Electro-magnetic Acoustic Transducer). Automation of fault detection by means of mobile robotic systems for these large-scale structures helps to prevent significant troubles without danger of human beings under harmful environment.

A Study on the Optimal Design of a Robotic Welding System for a High-strength Steel Amor Plate (고장력 장갑판재의 자동용접 시스템 최적 설계에 관한 연구)

  • Kim, Byeong-Ho;Kang, Hyeon-Je;Seo, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.31-38
    • /
    • 2016
  • This study proposes an optimal design for a robotic welding system for a high-strength steel armor plate. In order to identify the welding defect parameters, we analyzed the 4M (man, machine, materials, method) characteristics diagram, as well as a cause and effect matrix, to improve the productivity and quality of welding defects. From these analyses, we designed optimal welding conditions and carried out welding tests -- such as mechanical testing and macro structure tests - with positive results. We determined that it was possible to obtain a quality similar to manual welding with our robotic welding system. In the future, we expect that the system will be used as inspiration for future welding system designs.

Kinematic Optimal Design on a New Robotic Platform for Stair Climbing (계단 등반을 위한 신개념 로봇 플랫폼의 기구변수 최적화)

  • Seo, Byunghun;Hong, Sung Yull;Lee, Jeh Won;Seo, TaeWon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.427-433
    • /
    • 2013
  • Stair climbing is one of critical issues for field robots to widen applicable areas. This paper presents optimal design on kinematic parameters of a new robotic platform for stair climbing. The robotic platform climbs various stairs by body-flip locomotion with caterpillar type main platform. Kinematic parameters such as platform length, platform height, and caterpillar rotation speed are optimized to maximize stair-climbing stability. Three types of stairs are used to simulate typical user conditions. The optimal design process is conducted based on Taguchi methodology, and resulting parameters with optimized objective function are presented. In near future, a prototype is assembled for real environment testing.

Acceptance Testing and Commissioning of Robotic Intensity-Modulated Radiation Therapy M6 System Equipped with InCiseTM2 Multileaf Collimator

  • Yoon, Jeongmin;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • This work reports the acceptance testing and commissioning experience of the Robotic Intensity-Modulated Radiation Therapy (IMRT) M6 system with a newly released $InCise^{TM}2$ Multileaf Collimator (MLC) installed at the Yonsei Cancer Center. Acceptance testing included a mechanical interdigitation test, leaf positional accuracy, leakage check, and End-to-End (E2E) tests. Beam data measurements included tissue-phantom ratios (TPRs), off-center ratios (OCRs), output factors collected at 11 field sizes (the smallest field size was $7.6mm{\times}7.7mm$ and largest field size was $115.0mm{\times}100.1mm$ at 800 mm source-to-axis distance), and open beam profiles. The beam model was verified by checking patient-specific quality assurance (QA) in four fiducial-inserted phantoms, using 10 intracranial and extracranial patient plans. All measurements for acceptance testing satisfied manufacturing specifications. Mean leaf position offsets using the Garden Fence test were found to be $0.01{\pm}0.06mm$ and $0.07{\pm}0.05mm$ for X1 and X2 leaf banks, respectively. Maximum and average leaf leakages were 0.20% and 0.18%, respectively. E2E tests for five tracking modes showed 0.26 mm (6D Skull), 0.3 mm (Fiducial), 0.26 mm (Xsight Spine), 0.62 mm (Xsight Lung), and 0.6 mm (Synchrony). TPRs, OCRs, output factors, and open beams measured under various conditions agreed with composite data provided from the manufacturer to within 2%. Patient-specific QA results were evaluated in two ways. Point dose measurements with an ion chamber were all within the 5% absolute-dose agreement, and relative-dose measurements using an array ion chamber detector all satisfied the 3%/3 mm gamma criterion for more than 90% of the measurement points. The Robotic IMRT M6 system equipped with the $InCise^{TM}2$ MLC was proven to be accurate and reliable.

The Development of Safety and Essential Performance Criteria for Lower Extremity Robotic Assisted Gait Training System (하지 로봇재활의료기기의 안전성 및 필수성능 평가 기준 개발)

  • Yong Wan Kang;Ji Yean Kwon
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.190-203
    • /
    • 2023
  • The purpose of this study is to provide basic data to ensure the safety and essential performance of a Lower Extremity robotic assisted gait training system and to provide advanced technology and technical basis to the industry handling the system. Based on IEC 60601-1:2012/AMD2:2020 (Medical Electrical Equipment - General requirements for basic safety and essential performance of medical electrical equipment), IEC 62366-1:2015/AMD1:2020 (Medical devices - Part 1: Application of usability engineering to medical devices) and EN ISO 14971:2019 (Medical devices - Application of risk management to medical devices), the requirements for ensuring the safety and essential performance of the Lower Extremity robotic assisted gait training system were derived. Through the Delphi survey method and scenario analysis, which reflects the opinions and knowledge of experts in the fields of development, testing and review of technical documents, and quality assurance of medical devices, validity and reliability were conducted and obtained results with adequate content validity ratio (CVR; 0.7≤) and excellent reliability (Cronbach's α; 0.9≤). As a result, it was confirmed that the reliability and validity of the risk management process to ensure the safety and essential performance of the Lower Extremity robotic assisted gait training system are required a model can be established to provide measures to reduce risks according to the level of risk exposure caused by usage.

Feasibility Study of a Custom-made Film for End-to-End Quality Assurance Test of Robotic Intensity Modulated Radiation Therapy System

  • Kim, Juhye;Park, Kwangwoo;Yoon, Jeongmin;Lee, Eungman;Cho, Samju;Ahn, Sohyun;Park, Jeongeun;Choi, Wonhoon;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.189-195
    • /
    • 2016
  • This paper aims to verify the clinical feasibility of a custom-made film created by a laser cutting tool for End-to-End (E2E) quality assurance in robotic intensity modulated radiation therapy system. The custom-made film was fabricated from the Gafchromic EBT3 film with the size of $8^{{\prime}{\prime}}{\times}10^{{\prime}{\prime}}$ using a drawing that is identical to the shape and scale of the original E2E film. The drawing was created by using a computer aided design program with the image file, which is obtained by scanning original E2E film. Beam delivery and evaluations were respectively performed with the original film and the custom-made film using fixed-cone collimator on three tracking modes: 6D skull (6DS), Xsight spine (XS), and Xsight lung (XL). The differences between total targeting errors of the original and custom-made films were recorded as 0.17 mm, 0.3 mm, and 0.17 mm at 6DS, XS, and XL tracking modes, respectively. This indicates that the custom-made film could yield nearly equivalent results to those of the original E2E film, given the uncertainties caused by distortions during film scanning and vibrations associated with film cutting. By confirming the clinical feasibility of a custom-made film for E2E testing, it can be expected that economic efficiency of the testing will increase accordingly.

Modeling of Dynamics of Robot for Shoe Testing (신발테스트용 로봇의 동적 특성에 관한 모델링)

  • ;Gerald, Cole;Benno, Nigg
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1225-1227
    • /
    • 2004
  • The robotic shoe testing system that mechanically simulates human motion was proposed to overcome the problems associated with human subject tests. The objective of this study is to predict new motion trajectory for robot that will produce similar force and moment of particular human motion. In order to solve this problem, it is imperative to understand the dynamics of robot for shoe testing. The methodology using parameter estimation technique was proposed for this problem. Since the dynamics of robot is certainly different from that of human, it is necessary to adapt/modify the robot's trajectory for future analysis, which is currently under investigation.

  • PDF