• Title/Summary/Keyword: Robotic spine surgery

Search Result 3, Processing Time 0.018 seconds

Robot-Assisted Transoral Odontoidectomy : Experiment in New Minimally Invasive Technology, a Cadaveric Study

  • Yang, Moon-Sul;Yoon, Tae-Ho;Yoon, Do-Heum;Kim, Keung-Nyun;Pennant, William;Ha, Yoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.4
    • /
    • pp.248-251
    • /
    • 2011
  • Objective : In the field of spinal surgery, a few laboratory results or clinical cases about robotic spinal surgery have been reported. In vivo trials and development of related surgical instruments for spinal surgery are required before its clinical application. We investigated the use of the da $Vinci^{(R)}$ Surgical System in spinal surgery at the craniovertebral junction in a human cadaver to demonstrate the efficacy and pitfalls of robotic surgery. Methods : Dissection of pharyngeal wall to the exposure of C1 and odontoid process was performed with full robotic procedure. Although assistance of another surgeon was necessary for drilling and removal of odontoid process due to the lack of appropriate end-effectors, successful robotic procedures for dural sutures and exposing spinal cord proved its safety and dexterity. Results : Robot-assisted odontoidectomy was successfully performed in a human cadaver using the da $Vinci^{(R)}$ Surgical System with few robotic arm collisions and minimal soft tissue damages. Da $Vinci^{(R)}$ Surgical System manifested more dexterous movement than human hands in the deep and narrow oral cavity. Furthermore, sutures with robotic procedure in the oral cavity demonstrated the advantage over conventional procedure. Conclusion : Presenting cadaveric study proved the probability of robot-assisted transoral approach. However, the development of robotic instruments specific to spinal surgery must first precede its clinical application.

Design of Dexterous Manipulator for MIS (복강경 수술을 위한 지능형 작동기의 제작)

  • Song, Ho-Seok;Chung, Jong-Ha;Lee, Jung-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.823-828
    • /
    • 2004
  • Minimally Invasive Surgery (MIS) is surgery of the chest, abdomen, spine and pelvis, done with the aid of a viewing scope, and specially designed instruments. Benefits of minimally invasive surgery are less pain, less need for post-surgical pain medication, less scarring and less likelihood for incisional complications. Since the late 1980's, minimally invasive surgery has gained widespread acceptance because of the such advantages. However there are significant disadvantages which have, to date, limited the applications for these promising techniques. The reasons are limited degree-of-freedom, reduced dexterity and the lack of tactile feeling. To overcome such disadvantages many researchers have endeavored to develop robotic systems. Even though some robot aided systems achieved success and commercialized, there still remain many thing to be improved. In this paper, the robotic system which can mimic whole motions of a human arm by adding additional DOF is presented. The suggested design is expected to provide surgeons with improved dexterity during minimally invasive surgery.

  • PDF

A Single-Center Experience of Robotic-Assisted Spine Surgery in Korea : Analysis of Screw Accuracy, Potential Risk Factor of Screw Malposition and Learning Curve

  • Bu Kwang Oh;Dong Wuk Son;Jun Seok Lee;Su Hun Lee;Young Ha Kim;Soon Ki Sung;Sang Weon Lee;Geun Sung Song;Seong Yi
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.1
    • /
    • pp.60-72
    • /
    • 2024
  • Objective : Recently, robotic-assisted spine surgery (RASS) has been considered a minimally invasive and relatively accurate method. In total, 495 robotic-assisted pedicle screw fixation (RAPSF) procedures were attempted on 100 patients during a 14-month period. The current study aimed to analyze the accuracy, potential risk factors, and learning curve of RAPSF. Methods : This retrospective study evaluated the position of RAPSF using the Gertzbein and Robbins scale (GRS). The accuracy was analyzed using the ratio of the clinically acceptable group (GRS grades A and B), the dissatisfying group (GRS grades C, D, and E), and the Surgical Evaluation Assistant program. The RAPSF was divided into the no-breached group (GRS grade A) and breached group (GRS grades B, C, D, and E), and the potential risk factors of RAPSF were evaluated. The learning curve was analyzed by changes in robot-used time per screw and the occurrence tendency of breached and failed screws according to case accumulation. Results : The clinically acceptable group in RAPSF was 98.12%. In the analysis using the Surgical Evaluation Assistant program, the tip offset was 2.37±1.89 mm, the tail offset was 3.09±1.90 mm, and the angular offset was 3.72°±2.72°. In the analysis of potential risk factors, the difference in screw fixation level (p=0.009) and segmental distance between the tracker and the instrumented level (p=0.001) between the no-breached and breached group were statistically significant, but not for the other factors. The mean difference between the no-breach and breach groups was statistically significant in terms of pedicle width (p<0.001) and tail offset (p=0.042). In the learning curve analysis, the occurrence of breached and failed screws and the robot-used time per screw screws showed a significant decreasing trend. Conclusion : In the current study, RAPSF was highly accurate and the specific potential risk factors were not identified. However, pedicle width was presumed to be related to breached screw. Meanwhile, the robot-used time per screw and the incidence of breached and failed screws decreased with the learning curve.