• Title/Summary/Keyword: Robotic exoskeleton

Search Result 16, Processing Time 0.022 seconds

Intent signal generation of the exoskeletal robotics for construction workers and verification of its feasibility (건설작업자의 근력지원을 위한 외골격 모듈의 동작의지신호 생성 및 타당성 검증)

  • Lee, Seung-Hoon;Yu, Seung-Nam;Lee, Hee-Don;Jang, Jae-Ho;Han, Chang-Soo;Han, Jung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1603-1608
    • /
    • 2008
  • Powered robotic exoskeletons are currently under development for assisting or supporting human muscle power. Many applications using this system for the purpose of national defense system, medical support, and construction industry are now frequently introduced. In this paper, we proposed the exoskeletal wearable robotics for construction workers. First, we analyzed general work conditions at the construction site and set up target tasks through the datum. Then dominant muscles’ activity which is related with the defined target tasks was checked up. Herein, wearers’ intent signal generation methodology was introduced in order to effectively activate the proposed system. In the final part of this paper, we evaluated the capability and feasibility of the exoskeletal robotics by the electromyography (EMG) signal variance; demonstrated that robotic exoskeletons controlled by muscle activity could be useful way of assisting with construction workers.

  • PDF

A Novel Kinematic Design of a Knee Orthosis to Allow Independent Actuations During Swing and Stance Phases (회전기 및 착지기 분리 구동을 가능케 하는 새로운 무릎 보장구의 기구부 설계)

  • Pyo, Sang-Hun;Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.814-823
    • /
    • 2011
  • Nowadays many neurological diseases such as stroke and Parkinson diseases are continually increasing. Orthotic devices as well as exoskeletons have been widely developed for supporting movement assistance and therapy of patients. Robotic knee orthosis can compensate stiff-knee gait of the paralyzed limb and can provide patients consistent assistance at wearable environments. With keeping a robotic orthosis wearable, however, it is not easy to develop a compact and safe actuator with fast rotation and high torque for consistent supports of patients during walking. In this paper, we propose a novel kinematic model for a robotic knee orthosis to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The suggested kinematic model is composed of a hamstring device with a slide-crank mechanism, a quadriceps device with five-bar/six-bar links, and a patella device for knee covering. The quadriceps device operates in five-bar links with 2-dof motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The kinematics and velocity/force relations are analyzed for the quadriceps and hamstring devices. Finally, the adequate actuators for the suggested kinematic model are designed based on normal gait requirements. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking.

Human sensory feedback research in the armstrong laboratory

  • Weisenberger, Janet M.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.83-100
    • /
    • 1997
  • The Human Sensory Feedback Laboratory, park of the Armstrong Laboratory at Wright-Patterson Air Force Base, Ohio, is involved in the development and evaluation of systems that provide sensory feedback to the human operator in telerobotic and virtual environment applications. Specific projects underway in the laboratory are primarily concerned with the information provided by force and vibrotactile feedback to the operator in dextrous manipulation tasks. Four specific research projects are described in the present report. These include : 1) experiments evaluating a 30-element fingertip display, which employs a titanium-nickel shape memory alloy actuator design to provide vibrotactile feedback about object shape and surface texture ; 2) of a fingertip force-feedback display for 3-dimensional information about object shape and suface texture ; 3) use of a force- feedback joystic to provide "force tunnel" information in pilot pursuit tracking tasks ; and 4) evaluations of a 7 degree-of-freedom exoskeleton used to control a robotic arm. Both basic and applied research questions are discussed.

  • PDF

Optimal Design of a Novel Knee Orthosis using a Genetic Algorism (유전자 알고리즘을 이용한 새로운 무릎 보장구의 최적 설계)

  • Pyo, Sang-Hun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1021-1028
    • /
    • 2011
  • The objective of this paper is to optimize the design parameters of a novel mechanism for a robotic knee orthosis. The feature of the proposed knee othosis is to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The quadriceps device operates in five-bar links with 2-DOF motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking. However, the proposed orthosis must use additional linkages than a simple four-bar mechanism. To maximize the benefit of reducing the actuators power by using the developed kinematic design, it is necessary to minimize total weight of the device, while keeping necessary actuator performances of torques and angular velocities for support. In this paper, we use a SGA (Simple Genetic Algorithm) to minimize sum of total link lengths and motor power by reducing the weight of the novel knee orthosis. To find feasible parameters, kinematic constraints of the hamstring and quadriceps mechanisms have been applied to the algorithm. The proposed optimization scheme could reduce sum of total link lengths to half of the initial value. The proposed optimization scheme can be applied to reduce total weight of general multi-linkages while keeping necessary actuator specifications.

Robotics in Construction: State-of-Art of On-site Advanced Devices

  • Balzan, Alberto;Aparicio, Claudia Cabrera;Trabucco, Dario
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.95-104
    • /
    • 2020
  • Recently, robotic technologies have significantly improved, bringing considerable enhancements in many sectors; the main objective of this paper is to figure out if these innovations have also involved the building industry. To achieve this purpose, it has been considered crucial to first reshape and clarify some concepts, incorporating a much more flexible understanding of the term "robot", as well as the formulation of its future potential. Subsequently, it has been carried out an analysis of the various advanced devices that are currently available to be employed in the construction processes; the review includes a thorough classification of construction robots, divided into 18 families reflecting their purpose of use, and a dissection based on the term used to define them. The attention has been focused on the most updated and recent robots and, in their absence, on the most advanced machines prevailing. This operation has been achieved taking into account the development history of construction robots, as well as the analyses and classifications previously conducted, reconsidering them according to the just mentioned reflections. Furthermore, an in-depth exploration of the exoskeletons, as well as on a sophisticated robot recently developed by Schindler Group has been executed.

Design and Implementation of Motor-Based Rehabilitation Wearable Robot Hand System using 3D Printing (3D 프린팅을 활용한 전동식 재활용 웨어러블 로봇 손 시스템의 설계 및 구현)

  • Kim, Hyeon-Jun;Kim, Jung-Hyun;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.941-946
    • /
    • 2021
  • This paper is a study on the design and implementation of a rehabilitation wearable robotic hand that reduces weight and volume by using a 3D printer and a motor. Rehabilitation wearable robots are important not only for the effect of rehabilitation but also for ease of use. However, most of the currently researched and developed rehabilitation exoskeleton robots are heavy in volume and weight, or they have to be used in place. Therefore, a wearable robot that is easy to wear and does not burden the user is required, so a lightweight electric rehabilitation wearable robot hand is proposed. A 3D printer was used to reduce the weight and volume and to make it easier to wear. In addition, to increase portability, the structure was simplified by adopting an electric method rather than a pneumatic method. Finally, the effectiveness was examined through the experiment of the lightweight electric rehabilitation wearable robot hand.