• Title/Summary/Keyword: Robotic Navigation

Search Result 81, Processing Time 0.031 seconds

Experimental Setup for Autonomous Navigation of Robotic Vehicle for University Campus (대학 캠퍼스용 로봇차량의 자율주행을 위한 실험환경 구축)

  • Cho, Sung Taek;Park, Young Jun;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • This paper presents the experimental setup for autonomous navigation of a robotic vehicle for touring university campus. The robotic vehicle is developed for navigation of specific areas such as university campus or play parks. The robotic vehicle can carry two passengers to travel short distances. For the robotic vehicle to navigate autonomously the specific distance from the main gate to the administrative building in the university, the experimental setup for SLAM is presented. As an initial step, a simple method of following the line detected by a single camera is implemented for the partial area. The central line on the pavement colored with two kinds, red and yellow, is detected by image processing, and the robotic vehicle is commanded to follow the line. Experimental studies are conducted to demonstrate the performance of navigation as a possible touring vehicle.

A Navigation Algorithm using Locomotion Interface with Two 6-DOF Robotic Manipulators (ICCAS 2005)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2211-2216
    • /
    • 2005
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF parallel robotic manipulators. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation, using robotic manipulators. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. The walking velocity of the user is directly translated to VR actions for navigation. Finally, the functions of the RPC interface are utilized for each interaction mode. The suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

  • PDF

A Study on the Implementation of RFID-Based Autonomous Navigation System for Robotic Cellular Phone (RCP) (RFID를 이용한 RCP 자율 네비게이션 시스템 구현을 위한 연구)

  • Choe Jae-Il;Choi Jung-Wook;Oh Dong-Ik;Kim Seung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.480-488
    • /
    • 2006
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is one of the most attractive technologies of today. However, unless we find a new breakthrough in the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technologies. Unlike the industrial robot of the past, today's robots require advanced features, such as soft computing, human-friendly interface, interaction technique, speech recognition object recognition, among many others. In this paper, we present a new technological concept named RCP (Robotic Cellular Phone) which integrates RT and CP in the vision of opening a combined advancement of CP, IT, and RT, RCP consists of 3 sub-modules. They are $RCP^{Mobility}$(RCP Mobility System), $RCP^{Interaction}$, and $RCP^{Integration}$. The main focus of this paper is on $RCP^{Mobility}$ which combines an autonomous navigation system of the RT mobility with CP. Through $RCP^{Mobility}$, we are able to provide CP with robotic functions such as auto-charging and real-world robotic entertainment. Ultimately, CP may become a robotic pet to the human beings. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While the former is responsible for the wheel-based navigation of RCP, the latter provides localization information of the moving RCP With the coordinates acquired from RFID-based self-localization controller, trajectory controller refines RCP's movement to achieve better navigation. In this paper, a prototype of $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results on the RCP navigation.

An Interactive Robotic Cane for Blind Travelers

  • Shim, Inbo;Yoon, Joongsun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.119.6-119
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ A Robotic Cane "RoJi" $\textbullet$ Shared Navigation Control $\textbullet$ Autonomous Control Mode $\textbullet$ User Control Mode $\textbullet$ Navigation $\textbullet$ Summary

  • PDF

A Study on the Implementation of RFID-based Autonomous Navigation System for Robotic Cellular Phone(RCP)

  • Choe, Jae-Il;Choi, Jung-Wook;Oh, Dong-Ik;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.457-462
    • /
    • 2005
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is currently one of the most attractive technologies for all. However, unless we find a breakthrough to the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technology. Unlike the industrial robot of the past, today's robots require advanced technologies, such as soft computing, human-friendly interface, interaction technique, speech recognition, object recognition, and many others. In this study, we present a new technological concept named RCP(Robotic Cellular Phone), which combines RT & CP, in the vision of opening a new direction to the advance of CP, IT, and RT all together. RCP consists of 3 sub-modules. They are $RCP^{Mobility}$, $RCP^{Interaction}$, and $RCP^{Interaction}$. $RCP^{Mobility}$ is the main focus of this paper. It is an autonomous navigation system that combines RT mobility with CP. Through $RCP^{Mobility}$, we should be able to provide CP with robotic functionalities such as auto-charging and real-world robotic entertainments. Eventually, CP may become a robotic pet to the human being. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While Trajectory Controller is responsible for the wheel-based navigation of RCP, Self-Localization Controller provides localization information of the moving RCP. With the coordinate information acquired from RFID-based self-localization controller, Trajectory Controller refines RCP's movement to achieve better RCP navigations. In this paper, a prototype system we developed for $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results of the RCP navigation.

  • PDF

A Human Robot Interactive System 'RoJi '

  • Yoon, Joongsun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1900-1908
    • /
    • 2004
  • A human-friendly interactive system that is based on the harmonious symbiotic coexistence of human and robots is explored. Based on interactive technology paradigm, a robotic cane is proposed for blind or visually impaired travelers to navigate safely and quickly through obstacles and other hazards faced by blind pedestrians. Robotic aids, such as robotic canes, require cooperation between human and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction between humans and robots, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.

Landmark Navigation through Sector-based Image Matching Method with Reference Compass (각도 좌표계가 있는 경우의 구획 기반 이미지 매칭 기법을 이용한 랜드마크 네비게이션)

  • Lee, Ji-Won;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.674-680
    • /
    • 2010
  • It is known that many insects and animals can return to their nest after exploration, with their own specific homing mechanisms. Their homing navigation methods have been applied to the robotic navigation. In this paper, we test the sector-based image matching method motivated by the honeybee's landmark navigation behaviour. Here, our robotic approach uses the reference compass to identify the current head direction and the relative angular position of landmarks for the navigation. The robot shows desirable homing behaviors if the robot is surrounded by landmarks. The result of robot experiment is in good agreement with that of simulation.

Robotic Zigbee Network for Control of Ubiquitous Robot (유비쿼터스 로봇 제어를 위한 로보틱 지그비 네트워크)

  • Moon, Yong-Seomn;Roh, Sang-Hyun;Lee, Kwang-Seok;Park, Jong-Kyu;Bae, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.206-212
    • /
    • 2010
  • In this paper, we introduce the concept of robotic zigbee network as a necessary network to provide an application service of robot in the ubiquitous environment and propose an application scenario using the concept of robot Zigbee network. We have performed experiments on the network connection and data transmission which are basic of proposed an application scenario. Through the result of the experiments, we provide basis for development of robot localization and tracking algorithm which minimizes the localization error using robot Zigbee network in the future.

Homing Navigation Based on Path Integration with Optical Flow (광학 흐름 기반 경로 누적법을 이용한 귀소 내비게이션)

  • Cha, Young-Seo;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.94-102
    • /
    • 2012
  • There have been many homing navigation algorithms for robotic system. In this paper, we suggest a bio-inspired navigation model. It builds path integration based on optical flow. We consider two factors on robot movements, translational movement and rotational movement. For each movement, we found distinguishable optical flows. Based on optical flow, we estimate ego-centric robot movement and integrate the path optimally. We can determine the homing direction and distance. We test this algorithm and evaluate the performance of homing navigation for robotic system.

Advanced Bronchoscopic Diagnostic Techniques in Lung Cancer

  • Dongil Park
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.3
    • /
    • pp.282-291
    • /
    • 2024
  • The increasing incidence of incidental pulmonary nodules necessitates effective biopsy techniques for accurate diagnosis and treatment planning. This paper reviews the widely used advanced bronchoscopic techniques, such as radial endobronchial ultrasound-guided transbronchial lung biopsy, electromagnetic navigation bronchoscopy, and the cutting-edge robotic-assisted bronchoscopy. In addition, the cryobiopsy technique, which can enhance diagnostic yield by combination with conventional biopsy tools, is described for application to peripheral pulmonary lesions and mediastinal lesions, respectively.