• 제목/요약/키워드: Robotic Motion

검색결과 268건 처리시간 0.025초

3R 운동을 이용한 로보트 리스트에 관한 연구

  • 박경택
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.631-636
    • /
    • 1995
  • A robotic wrist with three rolling motion is considered. It has the gear trains with three independent input parameters and mechanical interference in their motion. This paper presents dervation of basic kinematic equations that relate the input parameters and the orientation of the end-effector, determination of singularities in its motion, and the computational procedure of the inverse kinematics.

로봇 조작도에 기반한 역도 들기 자세 해석 (Analysis of Weightlifting Motion Based on Robotic Manipulability)

  • 원경태;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.446-453
    • /
    • 1999
  • An athlete motion during weightlifting is analyzed based on robotic manipulability, which shows dexterities by changing the position and orientation of the end-effector of robot manipulators arbitrary or along a specified direction. The athlete body is modeled as a highly redundant robot manipulator. The motion of weightlifting is analyzed based on the selected model with a power manipulability. Power manipulability and its geometric characteristics are derived by combining kinematic manipulability and dynamic manipulability. Also, manipulability-based optimal trajectory of weightlifter for given body structure of weightlifter derived through genetic algorithm.

  • PDF

정밀조립을 위한 병렬다관절 구조를 가진 로봇손목기구의 개발 (Development of a parallel link typed wrist for robotic precision assembly)

  • 문창렬;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.281-286
    • /
    • 1993
  • In this paper, a parallel link typed wrist is developed for robotic precision assembly. The developed wrist can make the corrective motion required for compensating lateral and tilting errors. The mechanism of this wrist is one example of a motion simulator generating 6 DOF motion in space by 6 actuators connected in paralle. To make the wrist more compact, miniature DC motors containing reduction gears and servo system were used. The parallel link architecture enables a high positioning accuracy and high nominal load capacity. In this study, inverse kinematic problem is solved by using a Denavet-Hartenberg method and a simulational result about workspace of the proposed parallel mechanism is obtained.

  • PDF

평행구조 로보트 손목기구의 작업공간에 대한 연구 (A Study on the Workspace of a Parallel Robotic Wrist)

  • 양정모;백윤수;최용제
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.893-900
    • /
    • 1994
  • In this study, workspace analysis has been performed for a Clemens Coupling type parallel robotic wrist with four degrees of freedom such as three angular degrees of freedom and 1 plunge motion. Because of plunge motion, this mechanism has no singular point that the general roll-pitch-roll mechanisms have. Also, proposed mechanism performs larger load, faster motion, with less weight and has better structural characteristics such as higher stiffness and strength to weight ratio compared with serial type mechanisms. As a basic step for position control, the closed form solution of forward and inverse kinematics are proposed and workspace is analyzed and plotted by applying triangle tracer method for workspace boundary tracing.

  • PDF

조립부품의 분리도 및 불안정도를 이용한 Turning device의 선정 (Choice of Turning Devices for Robotic Assembly based on Separability and Instability)

  • 신철균;조형석
    • 한국정밀공학회지
    • /
    • 제12권1호
    • /
    • pp.132-141
    • /
    • 1995
  • This paper presents a choosing method of turning devices for stable robotic assembly based on verification of a base assembly motion instability. In flexible assembly application, the base assembly needs to be maintained in its assembled state without being taken apart. Therefore, the instability of the base assembly motion should be considered when determining the guide line of choosing turning devices by evaluating a degree of the motion instability of the base assembly. To derive the instability, first we inference collision free assembly directions by extracting separable directions for the mating parts and calculate the separability which gives informations as to how the parts can be essily separated. Using these results, we determine the instability evaluated by summing all the modified separabilites of each component part within base assembly.

  • PDF

로봇 핸드 제어를 위한 센서 기반 손 동작 인식 (Sensor-based Recognition of Human's Hand Motion for Control of a Robotic Hand)

  • 황면중
    • 한국산학기술학회논문지
    • /
    • 제15권9호
    • /
    • pp.5440-5445
    • /
    • 2014
  • 사람의 생체 신호를 측정하여 로봇 제어에 이용하는 연구는 최근까지 활발히 진행되고 있다. 하지만 정확한 센서 정보를 위한 복잡한 신호 처리가 필요하고 고가의 시스템을 필요로 하는 단점이 있다. 본 논문에서는 저가의 EMG 센서와 Flex 센서로부터 측정된 신호를 이용하여 사람의 손 동작을 인식한 후 해당 움직임을 원격지의 로봇 핸드로 구현하는 것을 목표로 한다. MCU(Micro Controller Unit) 와 해당 센서들을 이용하여 실험적으로 사람의 손과 팔 부근의 3개의 센서 부착 위치를 결정하고 움직임에 따른 출력 신호와 실제 동작 사이의 구분 방법을 결정한다. 동작 인식 정확도를 높이기 위해 MCU의 아날로그 기준 전압에 따른 디지털 값 변화 실험 수행 후 기준 전압을 3.3V로 선정하였다. 손 동작을 구현하기 위해 4개의 손가락과 손목부분으로 구성된 링크 구조의 로봇 핸드를 설계한 후 제작하였다. 결과적으로 간단한 센서와 저가의 MCU를 활용하여 원격지의 로봇 핸드를 제어할 수 있음을 보였다.

대장내시경을 위한 자기 충격 액츄에이터 (Magnetic Impact Actuator for Robotic Endoscope)

  • 민현진;임형준;김병규;김수현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.839-843
    • /
    • 2001
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes are not seemed to be replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope able to maneuver safely in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfer momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjusting impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulation experiments show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

  • PDF

Robotic Microsurgery Optimization

  • Brahmbhatt, Jamin V.;Gudeloglu, Ahmet;Liverneaux, Philippe;Parekattil, Sijo J.
    • Archives of Plastic Surgery
    • /
    • 제41권3호
    • /
    • pp.225-230
    • /
    • 2014
  • The increased application of the da Vinci robotic platform (Intuitive Surgical Inc.) for microsurgery has led to the development of new adjunctive surgical instrumentation. In microsurgery, the robotic platform can provide high definition $12{\times}-15{\times}$ digital magnification, broader range of motion, fine instrument handling with decreased tremor, reduced surgeon fatigue, and improved surgical productivity. This paper presents novel adjunctive tools that provide enhanced optical magnification, micro-Doppler sensing of vessels down to a 1-mm size, vein mapping capabilities, hydro-dissection, micro-ablation technology (with minimal thermal spread-$CO_2$ laser technology), and confocal microscopy to provide imaging at a cellular level. Microsurgical outcomes from the use of these tools in the management of patients with infertility and chronic groin and testicular pain are reviewed. All these instruments have been adapted for the robotic console and enhance the robot-assisted microsurgery experience. As the popularity of robot-assisted microsurgery grows, so will its breadth of instrumentation.

Feasibility Study of Robotics-based Patient Immobilization Device for Real-time Motion Compensation

  • Chung, Hyekyun;Cho, Seungryong;Cho, Byungchul
    • 한국의학물리학회지:의학물리
    • /
    • 제27권3호
    • /
    • pp.117-124
    • /
    • 2016
  • Intrafractional motion of patients, such as respiratory motion during radiation treatment, is an important issue in image-guided radiotherapy. The accuracy of the radiation treatment decreases as the motion range increases. We developed a control system for a robotic patient immobilization system that enables to reduce the range of tumor motion by compensating the tumor motion. Fusion technology, combining robotics and mechatronics, was developed and applied in this study. First, a small-sized prototype was established for use with an industrial miniature robot. The patient immobilization system consisted of an optical tracking system, a robotic couch, a robot controller, and a control program for managing the system components. A multi speed and position control mechanism with three degrees of freedom was designed. The parameters for operating the control system, such as the coordinate transformation parameters and calibration parameters, were measured and evaluated for a prototype device. After developing the control system using the prototype device, a feasibility test on a full-scale patient immobilization system was performed, using a large industrial robot and couch. The performances of both the prototype device and the realistic device were evaluated using a respiratory motion phantom, for several patterns of respiratory motion. For all patterns of motion, the root mean squared error of the corresponding detected motion trajectories were reduced by more than 40%. The proposed system improves the accuracy of the radiation dose delivered to the target and reduces the unwanted irradiation of normal tissue.