• Title/Summary/Keyword: Robotic Cooperation

Search Result 46, Processing Time 0.034 seconds

Vibration Suppression Control of Two Cooperating Flexible Manipulators (양팔 협조 유연 매니퓰레이터의 진동억제 제어)

  • Kim, Jin-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • For free motions, vibration suppression of single flexible manipulators has been one of the hottest research topics. However, for cooperative motions of multiple flexible manipulators, a little effort has been devoted for the vibration suppression control. So, the aim of this paper is to develop a hybrid force/position control and vibration suppression control scheme for multiple cooperation flexible manipulators handling a rigid object. In order to clarify the discussion, the motions of dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with hybrid position/force control scheme. Finally, Experiments are performed, and a comparison of experimental results is given to clarify the validity of our control scheme.

Development of a Emotion Estimation System using Biosignal under RCP Stimulation Environment (RCP에 의한 감각자극 상태에서 생체신호를 이용한 감성평가시스템 구현)

  • Kim, Dong-Wook;Kim, Seung-Woo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.265-270
    • /
    • 2006
  • 최근의 휴대전화 단말기(Cellular Phone, CP)는 IT기술을 적극적으로 접목하여 다양한 기능을 부가하고 있으나, 단순한 IT기술의 접목만으로는 CP기술 발전의 한계를 드러내고 있다. 이러한 상황에서 휴대전화 단말기에 개인용 로봇(Personal Robot)을 결합하여 로봇의 개인 서비스 기능과 엔터테인먼트 기능을 갖춘 개인로봇형 휴대전화단말기인 RCP(Robotic Cellular Phone)의 개념을 도입한 연구가 진행되고 있다. 본 논문에서는 RCP세부기술 중 하나인 $RCP^{Interaction}$에 주목한 연구로, RCP의 촉각 및 청각자극환경에서 인간이 느끼는 감성을 생체신호를 활용하여 객관적으로 감성을 평가할 수 있는 시스템에 대한 연구를 수행 하였다.

  • PDF

Development of Inspection Robotic System for a Bridge Structure Based on Capstone Design (창의적 공학설계에 근거한 교량 조사용 탐사로봇 시제품 개발)

  • Yang, Kyung-Taek;Jeong, Suk-Won
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.143-148
    • /
    • 2011
  • In this study, the damage to the bridge structure such as the crack and water leakage was assessed due to the increase of the vehicle load and traffic on the roads. In order to make this into the database, as a part of the automation system development for the bridge maintenance, the students themselves designed and developed their own inspection robotic system based on the idea of robots currently being developed overseas. Its field testing was conducted and its applicability assessed. During the design and fabrication, its connection to the details of the unit course taken in the undergraduate level was focused. In terms of new product development, the field application was possible due to the support of the academic-industrial cooperation firms. Furthermore, through the survey of the students, the improvements in the practical skills of the students who participated in this development process was affirmed.

  • PDF

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Development of Robotic System based on RFID Scanning for Efficient Inventory Management of Thick Plates (효율적인 후판 재고관리를 위한 RFID 스캐닝 로봇 시스템 개발)

  • Lee, Kwang-Hyoung;Min, So-Yeon;Lee, Jong-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.1-8
    • /
    • 2016
  • Automation of inventory management in a steel plate factory was a difficult problem unresolved for a long time. And now, it is also necessary to work diligently in the steel industry on efficient inventory management of thick plates. So far, the environmental characteristics of stacked thick plates means it is not easy to apply advanced technology for their automatic identification. In this paper, we propose a thick-plate robotic scanning system based on radio-frequency identification (RFID) that can provide quick and accurate inventory management by acquiring plate information after the scanning automatically recognizes the RFID tags under difficult load conditions. This system is equipped with a crane to move the plates in a pulled-up operation. It is equipped with a plate-only linear dipole antenna only for scanning the position of the plate tag. Only the linear dipole antenna, while moving the x-axis and y-axis information, automatically identifies the tag information attached to the plate. The tag information acquired by the system is used for stockpiling and is managed by steel plate inventory control software. The effectiveness of the proposed system is verified through field performance evaluation. As a result, the recognition rate of the plate tags is 99.9% at a maximum distance of 320 cm. The developed thick-plate antenna showed excellent performance compared to an existing commercial antenna.

Development of Variable Stiffness Soft Robot Hand for Improving Gripping Performance (그리핑 성능 향상을 위한 가변강성 소프트 로봇 핸드 개발)

  • Ham, KiBeom;Jeon, JongKyun;Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.47-53
    • /
    • 2018
  • Various types of robotic arms are being used for industrial purposes, particularly with the small production of multi-products, and the importance of the gripper, which can be used in industrial fields, is increasing. This study evaluated a variable stiffness mechanism gripper that can change the stiffness using the nonlinearity of a flexible material. A prototype of the gripper was fabricated and examined to confirm the change in stiffness. The previous gripper was unable to grip objects in some situations with three variable stiffness mechanism. In addition, these mechanisms were not balanced and rarely rotated when the object was gripped. Therefore, a new type of gripper was needed to solve this problem. Inspired by the movements of the human palm and Venus Flytrap, a new type of a variable stiffness soft robot hand was designed. The possibility of grasping could be increased by interlocking the palm folding mechanism by pulling the tendon attached to the variable stiffness mechanism. The soft robotic hand was used to grasp objects of various shapes and weights more stably than the previous variable stiffness mechanism gripper. This new variable stiffness soft robot hand can be used selectively depending on the application and environment to be used.

RFID Based Indoor Localization and Effective Tag Arrangement Method (RFID를 기반으로 한 실내 위치 파악 및 효율적 Tag 배치)

  • Yoon, Chang-Sun;Yoon, Dong-Min;Kwon, Young-Chan;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8760-8766
    • /
    • 2015
  • In this paper a technology which gives directions to people and also localization of the robotic vacuum cleaners inside some spacious buildings is developed. For this purpose, it is confirmed that which pattern has a small error in dealing with the indoor localization with various RFID tag arrangements attached on the ground. This experiment was conducted by using MT92(900MHz range Antenna) and ALR 9900+(Reader). As a result, the square arrangement has the least error, 21.19cm, among other patterns which are diamond, rectangle and regular hexagon. However, it is necessary to consider the number of tags in the unit area, from this point of view the regular hexagon arrangement is the most efficient arrangement among other patterns because it needs only 6 tags in the unit area.

Study on the Small Sized Robots Actuator using Piezoelectric Ceramic Bender (압전세라믹 벤더를 이용한 소형로봇용 구동원에 관한 연구)

  • Park, Jong-Man;Song, Chi-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study proposed piezoelectric ceramic bender actuators for application to small walking robots. As the space where human access has recently become increasingly restricted (e.g., highly concentrated radioactive storage areas, viral contaminated areas, terrorist zones, etc.), the scope of using robots is becoming more diverse, and many actions that were possible only in the past have been attempted to be replaced by small robots. This robotic concept has the advantage of being simple in structure, making it compact and producing a large size work force. The dynamic modeling, using finite element analysis, maximized the robot's mobility performance by optimizing the shape of the actuator, and the results were verified through fabrication and experimentation. The actuator moved at a maximum speed of 236 mm/s under no load conditions, and it could move at a speed of 156 mm/s under load conditions of 5g. The proposed actuator has the advantage of modular additions depending on the mission and required performance, which ensured that they are competitive against similar drive sources previously created.

The Long Distance Face Recognition using Multiple Distance Face Images Acquired from a Zoom Camera (줌 카메라를 통해 획득된 거리별 얼굴 영상을 이용한 원거리 얼굴 인식 기술)

  • Moon, Hae-Min;Pan, Sung Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1139-1145
    • /
    • 2014
  • User recognition technology, which identifies or verifies a certain individual is absolutely essential under robotic environments for intelligent services. The conventional face recognition algorithm using single distance face image as training images has a problem that face recognition rate decreases as distance increases. The face recognition algorithm using face images by actual distance as training images shows good performance but this has a problem that it requires user cooperation. This paper proposes the LDA-based long distance face recognition method which uses multiple distance face images from a zoom camera for training face images. The proposed face recognition technique generated better performance by average 7.8% than the technique using the existing single distance face image as training. Compared with the technique that used face images by distance as training, the performance fell average 8.0%. However, the proposed method has a strength that it spends less time and requires less cooperation to users when taking face images.

A Study on the Adjustable Autonomy for the Performance Improvement of Cooperating Robots (협조 로봇의 작업 성능 향상을 위한 자율도 조정에 관한 연구)

  • Cho, Hye-Kyung
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.61-67
    • /
    • 2006
  • This paper provides a systematic way of integrating human intelligence and autonomous precision of robots to achieve the highest possible performance of a cooperating robot system. Adjustable autonomy, which deals with the combination of human and robotic skills, has the potential to bridge the gap which leaves many tasks suited to robotics beyond the reach of existing technology. Especially we will show that relevant human assistance or intervention will increase system performance by improving the exception handling capability, simplifying autonomous operation, and boosting speed and reliability. To support the usefulness of our scheme, a series of experiments were conducted with three cooperating robots which work together to dock both ends of a long suspended beam into stanchions.

  • PDF