• Title/Summary/Keyword: Robot-ship

Search Result 94, Processing Time 0.031 seconds

Design of ship dry multi-function handling robot (선박건조용 다기능 핸들링로봇의 설계)

  • 권광진;전재억;정진서;황영모;박후명;하만경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.231-234
    • /
    • 2004
  • Ratio that robot occupies is low level worldwide fairly in suspension wire, electricity electron and neutralization learning industry and domestic industry of this is staring in average love. Can speak that grafting of robotic machine and neutralization learning industry is high in terms of side of creation of the added value or progress of technology rightly hereupon. This research raises or designed multi-function handling robot that can make welding, assembly conveniently catching large size work water

  • PDF

Development of Welding Robot for Corner-piece in LNG Ship (LNG선 화물창의 코너부위 용접로봇 개발)

  • Kim, Jae-Gwon;Lee, Ji-Hyoung;Kim, Jong-Jun;Bae, Beom-Chan;Park, In-Wan;Kim, Kyeong-Ju
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.27-31
    • /
    • 2010
  • Generally, angle pieces at the corners of cargo tank of membrane type LNG carrier ship are manually welded, due to their various shapes and positions. In this study, a GTA welding robot system was developed in order to improve productivity, which consists of a 7-axis manipulator, a system controller, a GTA welding power source, and peripheral devices. The welding system is characterized by capabilities of welding corrugated work pieces as well as 90/135 degree linear work pieces, and controlling the entire weld cycle automatically. The developed system was field tested on actual work pieces and its performance was proven to be successful.

Position Estimation of the Welding Panels for Sub-assembly line in Shipbuilding by Vision System (시각 장치를 사용한 조선 소조립 라인에서의 용접부재 위치 인식)

  • 노영준;고국원;조형석;윤재웅;전자롬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.719-723
    • /
    • 1997
  • The welding automation in ship manufacturing process,especially in the sub-assembly line is considered to be a difficult job because the welding part is too huge, various, unstructured for a welding robot to weld fully automatically. The weld orocess at the sub-assembly line for ship manufacturing is to joint the various stiffener on the base panel. In order to realize automatic robot weld in sub-assembly line, robot have to equip with the sensing system to recognize the position of the parts. In this research,we developed a vision system to detect the position of base panle for sub-assembly line is shipbuilding process. The vision system is composed of one CCD camera attached on the base of robot, 2-500W halogen lamps for active illumination. In the image processing algorithm,the base panel is represented by two set of lines located at its two corner through hough transform. However, the various noise line caused by highlight,scratches and stiffener,roller in conveyor, and so on is contained in the captured image, this nosie can be eliminated by region segmentation and threshold in hough transform domain. The matching process to recognize the position of weld panel is executed by finding patterns in the Hough transformed domain. The sets of experiments performed in the sub-assembly line show the effectiveness of the proposed algorithm.

  • PDF

Development of a hull-plate moving robot with permanent magnets (영구자석을 이용한 선체 외판 주행 로봇 개발)

  • Kim, Eun-Young;Lee, Dong-Hoon;Kim, Ho-Kyeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.990-995
    • /
    • 2008
  • During the ship's construction process, most high place workings have been carried out by human power, like welding, grinding and so on. Because of the ability to relieve human beings from these, the need of developing a hull-plate moving robot has been rising. This paper describes a hull-plate moving robot, using magnet modules as the adhesive method. Magnet modules maintain the magnetic force between hull-plate and magnets constantly. So that allows the robot to perform movements on the curved plate without the loss of adhesive force. The robot consists of driving motors, control system and magnet modules. The performance of the robot is verified on the curved plate.

  • PDF

Hydrodynamic design of an underwater hull cleaning robot and its evaluation

  • Lee, Man Hyung;Park, Yu Dark;Park, Hyung Gyu;Park, Won Chul;Hong, Sinpyo;Lee, Kil Soo;Chun, Ho Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.335-352
    • /
    • 2012
  • An underwater hull cleaning robot can be a desirable choice for the cleaning of large ships. It can make the cleaning process safe and economical. This paper presents a hydrodynamic design of an underwater cleaning robot and its evaluation for an underwater ship hull cleaning robot. The hydrodynamic design process of the robot body is described in detail. Optimal body design process with compromises among conflicting design requirements is given. Experimental results on the hydrodynamic performance of the robot are given.

Design of Static Gait Algorithm for Hexapod Subsea Walking Robot: Crabster (6 족 해저보행로봇을 위한 정적 보행 알고리즘 설계)

  • Yoo, Seong Yeol;Jun, Bong Huan;Shim, Hyungwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.989-997
    • /
    • 2014
  • In this paper, we describe a design method for the static walking algorithm of a subsea hexapod robot called Crabster (CR200). To design the gait algorithms of a hexapod robot, we propose a design method that uses a gait schedule vector and leg pair vector to secure convenience and expandability. Several walking algorithms are designed that are capable of being applied to CR200 according to the underwater environment and explorative conditions. In addition, gait transition is freely performed between algorithms by applying common control parameters to them. The gait algorithms designed using the proposed method are simulated using MATLAB and validated against the results of experiments.

A Study on Image-Based Mobile Robot Driving on Ship Deck (선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구)

  • Seon-Deok Kim;Kyung-Min Park;Seung-Yeol Wang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1216-1221
    • /
    • 2022
  • Ships tend to be larger to increase the efficiency of cargo transportation. Larger ships lead to increased travel time for ship workers, increased work intensity, and reduced work efficiency. Problems such as increased work intensity are reducing the influx of young people into labor, along with the phenomenon of avoidance of high intensity labor by the younger generation. In addition, the rapid aging of the population and decrease in the young labor force aggravate the labor shortage problem in the maritime industry. To overcome this, the maritime industry has recently introduced technologies such as an intelligent production design platform and a smart production operation management system, and a smart autonomous logistics system in one of these technologies. The smart autonomous logistics system is a technology that delivers various goods using intelligent mobile robots, and enables the robot to drive itself by using sensors such as lidar and camera. Therefore, in this paper, it was checked whether the mobile robot could autonomously drive to the stop sign by detecting the passage way of the ship deck. The autonomous driving was performed by detecting the passage way of the ship deck through the camera mounted on the mobile robot based on the data learned through Nvidia's End-to-end learning. The mobile robot was stopped by checking the stop sign using SSD MobileNetV2. The experiment was repeated five times in which the mobile robot autonomously drives to the stop sign without deviation from the ship deck passage way at a distance of about 70m. As a result of the experiment, it was confirmed that the mobile robot was driven without deviation from passage way. If the smart autonomous logistics system to which this result is applied is used in the marine industry, it is thought that the stability, reduction of labor force, and work efficiency will be improved when workers work.

Development of Robot Fish, ROFI 1.1

  • Kwack, Sang-Hyun;Kim, Yong-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This study introduces the development of robot fish ROFI 1.1. Today, robot fish is one of strong candidates for next-generation UUV. The present paper describes the design, manufacturing, and operation tests of the robot fish developed at Seoul National University. The very first robot fish in Korea, ROFI 1.1 is operated by a wireless remote controller. Its overall length is 680mm, and weight is 8.8kg. The fore body contains main mechanical and electrical systems and is covered by a FRP skin. The aft body has a mechanical bone system that mimics fish bones, and its skin is made of flexible silicon sponge to allow elastic motion for propulsion. It is found that this mechanical system creates effective and realistic fish-like swimming mode. It is observed that the normal and maximum advancing speeds of ROFI 1.1 are about 1 and 2 m/sec, and the turning radius is between $0.7{\sim}2.5m$, depending on the turning mechanism.