• Title/Summary/Keyword: Robot-hand

Search Result 430, Processing Time 0.035 seconds

A Research on the Design and Development of a Robot System with Multi-fingered Hands (다지 로봇 시스템의 설계 및 개발에 관한 연구)

  • Lee, Ho-Youn;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.138-141
    • /
    • 2002
  • In this paper, we developed a Master Hand which has 20 potentiometer for getting grasping data of human hands, a Slave Hand which has 20 DOF and five fingers with servo-motors, and a controller for the 7 DOF Arm with Multi-fingered hands. And, we programmed a 3D simulation S/W which controls a Robot System with Multi-fingered hands. A developed Robot System showed good performance in the grasping of an object with known position and shape.

  • PDF

Selection of Standard Hand Posture for Graphic Hand Posture Editor (손 모양 데이터 편집기의 기준 손 모양 결정 방법)

  • Oh, Young-Joon;Park, Kwang-Hyun;Jang, Hyo-Young;Kim, Dae-Jin;Jung, Jin-Woo;Bien, Zeung-Nam
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.739-740
    • /
    • 2006
  • 본 논문에서는 입력한 데이터를 분석하고 비교하여 손 모양 데이터 편집기의 기준 손 모양을 결정하는 방법을 제안한다. 즉, 입력한 손 모양 데이터에 대해 빈도수 혹은 평균값을 사용하여 기준 손 모양을 결정하는 방법을 제안한다. 입력한 손 모양 데이터로부터 제안한 방법을 통해 얻어진 손 모양이 실제 표현하고 자 한 손 모양과 일치하는지 실험을 통해 비교하였는데, 6,135개의 입력 데이터에 대해 두 가지 방법 모두 90.6% 일치하였다.

  • PDF

Robotic Needle Insertion Using Corneal Applanation for Deep Anterior Lamellar Keratoplasty (각막 압평을 이용한 로봇 바늘 삽입법: 심부표층각막이식수술에의 적용)

  • Park, Ikjong;Shin, Hyung Gon;Kim, Keehoon;Kim, Hong Kyun;Kyun., Wan
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • This paper describes a robotic teleoperation system to perform an accurate needle insertion into a cornea for a separation between the stromal layer and Descemet's membrane during deep anterior lamellar Keratoplasty (DALK). The system can reduce the hand tremor of a surgeon by scaling the input motion, which is the control input of the slave robot. Moreover, we utilize corneal applanation to estimate the insertion depth. The proposed system was validated by performing the layer separation using 25 porcine eyes. The average depth of needle insertion was 742 ± 39.8 ㎛ while the target insertion depth was 750 ㎛. Tremor error was reduced from 402 ± 248 ㎛ in the master device to 28.5 ± 21.0 ㎛ in the slave robot. The rate of complete success, partial success, and failure were 60, 28, and 12%, respectively. The experimental results showed that the proposed system was able to reduce the hand tremor of surgeons and perform precise needle insertion during DALK.

A Study on Robot Hand Gripper Design and Robust Control for Assembly and Disassembly Task of Machine Parts (기계 부품의 조립분해 작업을 위한 로봇핸드 그리퍼 설계 및 견실제어에 관한 연구)

  • Jeong, Gyu-Hyun;Shin, Gi-Su;Noh, Yeon-Guk;Moon, Byeong-Gap;Yoon, Byeong-Seok;Bae, Ho-Young;Kim, Min-Seong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.299-305
    • /
    • 2017
  • This study proposes a new technique to design and control of robot hand gripper for assembling and disassembling of a machine parts. The motion equation describing dynamics of the manipulators and object together with geometric constraint is formulated by Lagrange-Euler's equation. And the problems of controlling both the grasping force and the rotation angle of the grasped object under the constraints are analyzed. The effect of geometric constraints and a method of computer simulation for overall system is verified. Finally, it is illustrated that even in case of there exists a sensory feedback from sensing data of the rotational angle of the object to command inputs control of joint and this feedback connection from sensing data to control grasping of machinery parts.

BASIC MECHANISM OF ROBOT ADAPTED TO PHYSICAL PROPERTIES OF TOMATO PLANT

  • Kondo, N.;Monta, M.;Shibano, Y.;Mohri, K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.840-849
    • /
    • 1993
  • In this paper, it is reported that manipulator and hand-required for harvesting tomato were studied. At first, basic physical properties of tomato plant were investigated such as position of fruit, length of stems and leaves, width between ridges and son on . Secondly , basic mechanism of articulate manipulators with 5 to 7 degree of freedom were investigated by using evaluation indexes such as operational space, measure of manipulatability , posture diversity and so on. From the results, an articulate manipulator with 7 degrees of freedom was selected and the manipulator was manufactured as a trial according to the mechanism. Thirdly , physical properties about fruit and peduncle of tomato were also researched such as diameter, length , picking force and so on. Based on the properties , tomato harvesting hand with absorptive pad were also made as a trial. Finally, after the hand was attached to the manipulator, harvesting experiment was done in greenhouse . It was observed th t the robot could harvest satisfactorily , not only since the robot adapted to physical properties of tomato plant was manufactured but also since phyllotaxis of tomatoes was so methodical that all fruit clusters emerged in the same direction.

  • PDF

Anthropomorphic Robot Hand: Gifu Hand III

  • Jung, Kwang-Mok;Lee, Sang-Won;Kwak, Jong-won;Kim, Hun-Mo;Nam, Jae-Do;Jeon, Jae-Wook;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.78.6-78
    • /
    • 2002
  • $\textbullet$ The Gifu Hand III is a 5-fingered hand driven by built-in servomotors and has 20 joints with 10 DOF. $\textbullet$ The backlash of transmission, the mobility space, and the opposability of the thumb are improved. $\textbullet$ The new distributed tactile sensor with 859 detecting points is mounted on the hand surface. $\textbullet$ Experiments of grasping objects by a grasping strategy imitating human grasping reflex are shown.

  • PDF

Axiomatic Design of Composite Double Arm Type Robot Hands and Wrists for Handling Large Glass Panel Displays (공리 설계를 적용한 대형 평판 디스플레이용 더블암형 복합재료 로봇 핸드 및 리스트)

  • 이창섭;이대길;최진경
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.241-244
    • /
    • 2002
  • Recently, the size of glass panel is increased to $1250 mm{\times}1100 mm{\times}0.7 mm$, whose mass is 2.65 kg, which requires much stiffer robot structure. In addition to the high stiffness, the robot hands and wrists for glass panel handling should have miller surface finishing of its outer surface to prevent particles and dusts from adhering on the surface. The maximum height of the robot structure should not be larger than 1500 mm because other automated guided vehicles (AGV) and transfer equipments have been designed within this size limit. The difference of maximum deflections of the four ends of the hands before and after loading the glass panel should be less than 2.0 mm. In this work, the robot hands and wrists for handling large glass panel displays were designed based on the axiomatic design using the finite element method along with optimization routine.

  • PDF

Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot

  • Kim, Gab-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.419-428
    • /
    • 2007
  • This paper describes the development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot's wrist and ankle. In order to accurately push and pull an object with an intelligent robot's hand, and in order to safely walk with an intelligent robot's foot, the robot's wrist and ankle should measure three forces Fx, Fy, and Fz, and three moments Mx, My, and Mz simultaneously from the mounted six-axis force/moment sensor to the intelligent robot's wrist and ankle. Unfortunately, the developed six-axis force/moment sensor utilized in other industrial fields is not proper for an intelligent robot's wrist and ankle in the size and the rated output of the six-axis force/moment sensor. In this paper, the structure of a six-axis force/moment sensor with rectangular taper beams was newly modeled for an intelligent robot's wrist and ankle, and the sensing elements were designed by using the derived equations, following which the six-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements. Moreover, the characteristic test of the developed sensor was carried out by using the six-component force/moment sensor testing machine. The rated outputs from the derived equations agree well with those from the experiments. The interference error of the sensor is less than 2.87%.

Development of The Moving Target Tracking Robot in Outdoor Environment (실외환경에서의 이동 목표 추종용 로봇의 개발)

  • 안철기;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.954-962
    • /
    • 2002
  • In a park or street, we can see many people jogging or walking with their dogs tracking their masters. In this study, an entertainment robot that imitates a dog's behavior is created. The robot's task is tracking a moving target that is recognized as the master. In order to design the robot, the ecological approach. in which the robot's goals and surroundings heavily influence its design, is used. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a human jogging in outdoor space like a park. A sensor system which can detect the position of a master for the robot in the outdoor space, is developed. This sensor system consists of a signal transmitter which is at the hand of a master and some sensors which are mounted on the robot. The transmitter emits RF(radio frequency) and ultrasonic signals and the sensors detect the direction and distance from the robot to the transmitter by using the received signals. For the control architecture of the robot, a purely reactive behavior-based method is used in order to increase speed of response. The developed robot is evaluated through experiments conducted in indoor and outdoor environments.