• Title/Summary/Keyword: Robot wrist

Search Result 83, Processing Time 0.027 seconds

A Head-Eye Calibration Technique Using Image Rectification (영상 교정을 이용한 헤드-아이 보정 기법)

  • Kim, Nak-Hyun;Kim, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.8
    • /
    • pp.11-23
    • /
    • 2000
  • Head-eye calibration is a process for estimating the unknown orientation and position of a camera with respect to a mobile platform, such as a robot wrist. We present a new head-eye calibration technique which can be applied for platforms with rather limited motion capability In particular, the proposed calibration technique can be applied to find the relative orientation of a camera mounted on a linear translation platform which does not have rotation capability. The algorithm find the rotation using a calibration data obtained from pure Translation of a camera along two different axes We have derived a calibration algorithm exploiting the rectification technique in such a way that the rectified images should satisfy the epipolar constraint. We present the calibration procedure for both the rotation and the translation components of a camera relative to the platform coordinates. The efficacy of the algorithm is demonstrated through simulations and real experiments.

  • PDF

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

Morphometric Study on the Arterial Palmar Arch of the Hand (손바닥 동맥활에 관한 형태계측 연구)

  • Park, Bong Kwon;Jang, Soo Won;Choi, Seung Suk;Ahn, Hee Chang
    • Archives of Plastic Surgery
    • /
    • v.36 no.6
    • /
    • pp.691-701
    • /
    • 2009
  • Purpose: Deviations of arterial palmar arches in the hand can be explained on the embryological basis. The purpose of this study was to provide new information about palmar arches through cadaver's dissection. The values of the location and diameter in these vessels were analyzed in order to support anatomical research and clinical correlation in the hand. Methods: The present report is based on an analysis of dissections of fifty - three hands carried out in the laboratory of gross anatomy. A reference line was established on the distal wrist crease to serve as the X coordinate and a perpendicular line drawn through the midpoint between middle and ring fingers, which served as the Y coordinate. The coordinates of the x and y values were measured by a digimatic caliper, and statistically analyzed with Student's t - test. Results: Complete superficial palmar archs were seen in 96.2 % of specimens. In the most common type of males, the superficial arch was formed only by the ulnar artery. In the most common type of females, the superficial arch was formed anastomosis between the radial artery and the ulnar artery. The average length of the superficial and deep palmar arch is $110.3{\pm}33.0mm$ and $67.9{\pm}14.0mm$ respectively. Regarding the superficial palmar arch, ulnar artery starts $-16.1{\pm}5.1mm$ on X - line, and $2.5{\pm}24.5mm$ on Y - line. Radial artery appears on palmar side $7.7{\pm}3.2mm$ on X - line, and $20.9{\pm}10.9mm$ on Y - line. But radial artery starts on $6.3{\pm}3.6mm$ on X - line, and $3.4{\pm}5.1mm$ on Y - line. Digital arteries of superficial palmar arch starts on $6.1{\pm}3.7mm$, $33.9{\pm}8.8mm$ on index finger, $1.8{\pm}3.4mm$, $40.1{\pm}7.3mm$ on middle finger, $-3.2{\pm}4.9mm$, $42.6{\pm}7.0mm$ on ring finger, and $-8.9{\pm}5.1mm$, $42.5{\pm}80mm$ on little finger in respective X and Y coordinates. Radial artery of deep palmar arches measured at the palmar side perforating from the dorsum of hand. It's coordinates were $9.7{\pm}4.8mm$ on X - line, $21.7{\pm}10.2mm$ on Y - line. Ulnar artery was measured at hypothenar area, and it's coordinates were $-20.4{\pm}6.3mm$ on X - line, and $30.6{\pm}7.4mm$ on Y - line. Conclusions: Anatomically superficial palmar arch can be divided into a complete and an incomplete type. Each of them can be subdivided into 4 types. The deep palmar arch is less variable than the superficial palmar arch. We believe these values of the study will be used for the vascular surgery of the hand using the endoscope and robot in the future.