• Title/Summary/Keyword: Robot navigation

Search Result 825, Processing Time 0.029 seconds

A Navigation Algorithm for Mobile Robots in Unknown Environments (미지 환경에서 이동로봇의 주행 알고리즘)

  • Yi Hyun-Jae;Choi Young-Kiu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.275-284
    • /
    • 2006
  • This paper deals with problems of safe and efficient navigation algorithm for autonomous mobile robots in unknown environments. Since the obstacle avoidance algorithms are very important in mobile robot navigation, two obstacle avoidance algorithms: VFH(vector field histogram) algorithm and a fuzzy algorithm are combined to have optimal performance in various environments. And a upper-level supervisor is to select the proper one from VFH algorithm and the fuzzy algorithm according to the situations the robot faces. Computer simulation results show the effectiveness of the proposed navigation algorithm for autonomous mobile robots.

Map-Building and Position Estimation based on Multi-Sensor Fusion for Mobile Robot Navigation in an Unknown Environment (이동로봇의 자율주행을 위한 다중센서융합기반의 지도작성 및 위치추정)

  • Jin, Tae-Seok;Lee, Min-Jung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.434-443
    • /
    • 2007
  • Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.

Online Control of DC Motors Using Fuzzy Logic Controller for Remote Operated Robots

  • Prema, K.;Kumar, N. Senthil;Dash, Subhransu Sekhar
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.352-362
    • /
    • 2014
  • In this paper, a fuzzy logic controller is designed for a DC motor which can be used for navigation control of mobile robots. These mobile robots can be used for agricultural, defense and assorted social applications. The robots used in these fields can reduce manpower, save human life and can be operated using remote control from a distant place. The developed fuzzy logic controller is used to control navigation speed and steering angle according to the desired reference position. Differential drive is used to control the steering angle and the speed of the robot. Two DC motors are connected with the rear wheels of the robot. They are controlled by a fuzzy logic controller to offer accurate steering angle and the driving speed of the robot. Its location is monitored using GPS (Global Positioning System) on a real time basis. IR sensors in the robot detect obstacles around the robot. The designed fuzzy logic controller has been implemented in a robot, which depicts that the robot could avoid obstacle as well as perform its operation efficiently with remote online control.

Design of a Web-based Autonomous Under-water Mobile Robot Controller Using Neuro-Fuzzy in the Dynamic Environment (동적 환경에서 뉴로-퍼지를 이용한 웹 기반 자율 잠수 이동로봇 제어기 설계)

  • 최규종;신상운;안두성
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.77-83
    • /
    • 2003
  • Autonomous mobile robots based on the Web have been already used in public places such as museums. There are many kinds of problems to be solved because of the limitation of Web and the dynamically changing environment. We present a methodology for intelligent mobile robot that demonstrates a certain degree of autonomy in navigation applications. In this paper, we focus on a mobile robot navigator equipped with neuro-fuzzy controller which perceives the environment, make decisions, and take actions. The neuro-fuzzy controller equipped with collision avoidance behavior and target trace behavior enables the mobile robot to navigate in dynamic environment from the start location to goal location. Most telerobotics system workable on the Web have used standard Internet techniques such as HTTP, CGI and Scripting languages. However, for mobile robot navigations, these tools have significant limitations. In our study, C# and ASP.NET are used for both the client and the server side programs because of their interactivity and quick responsibility. Two kinds of simulations are performed to verify our proposed method. Our approach is verified through computer simulations of collision avoidance and target trace.

Global Map Building and Navigation of Mobile Robot Based on Ultrasonic Sensor Data Fusion

  • Kang, Shin-Chul;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.198-204
    • /
    • 2007
  • In mobile robotics, ultrasonic sensors became standard devices for collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. The global map building based on multi-sensor data fusion is applied for recognition an obstacle free path from a starting position to a known goal region, and simultaneously build a map of straight line segment geometric primitives based on the application of the Hough transform from the actual and noisy sonar data. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, Hough transform, since there exist several recent thorough books and review paper on this paper. Experimental results with a real Pioneer DX2 mobile robot will demonstrate the effectiveness of the discussed methods.

A Study on Intelligence Navigation for Autonomous Mobile Robot Using Fuzzy Logic Control

  • Huh, Dei-Jeung;Lee, Woo-Young;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138.5-138
    • /
    • 2001
  • The autonomous robot has the ability of obstacle avoidance and target tracking with some manufactured information. In this paper, it is shown that autonomous mobile robot can avoid fixed obstacles using the map made before and the fuzzy controller is adopted with the global path planing and the local path planing when the robot navigates. With that map sensor, information will be used when an autonomous robot navigates. This paper proves that robot can navigate through optimized route and keep the stable condition.

  • PDF

A Study on Implementation of Ubiquitous Home Mess-Cleanup Robot (유비쿼터스 홈 메스클린업 로봇의 구현에 관한 연구)

  • Cha Hyun-Koo;Kim Seung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1011-1019
    • /
    • 2005
  • In this paper, Ubiquitous Home Mess-Cleanup Robot(UHMR), which has a practical function of the automatic mess-cleanup, is developed. The vacuum-cleaner had made the burden of house chore lighten but the operation labour of a vacuum-cleaner had been so severe. Recently, the cleaning robot was producted to perfectly solve the cleaning labour of a house but it also was not successful because it still had a problem of mess-cleaning, which was the clean-up of big trash and the arrangement of newspapers, clothes, etc. The cleaning robot is to just vacuum dust and small trash but has no function to arrange and take away before the automatic vacuum-cleaning. For this reason, the market for the cleaning robot is not yet built up. So, we need a design method and technological algorithm of new automatic machine to solve the problem of mess-cleanup in house. It needs functions of agile automatic navigation, novel manipulation system for mess-cleanup. The automatic navigation system has to be controlled for the full scanning of living room, to recognize the absolute position and orientation of tile self, the precise tracking of the desired path, and to distinguish the mess object to clean-up from obstacle object to just avoid. The manipulate,, which is not needed in the vacuum-cleaning robot, must have the functions, how to distinguish big trash to clean from mess objects to arrange, how to grasp in according to the form of mess objects, how to move to the destination in according to mess objects and arrange them. We use the RFID system to solve the problems in this paper and propose the reading algorithm of RFID tags installed in indoor objects and environments. Then, it should be an intelligent system so that the mess cleaning task can be autonomously performed in a wide variety of situations and environments. It needs to also has the entertainment functions for the good communication between the human and UHMR. Finally, the good performance of the designed UHMR is confirmed through the results of the mess clean-up and arrangement.

A Development of Home Mess-Cleanup Robot

  • Cha, Hyun-Koo;Jang, Kyung-Jun;Im, Chan-Young;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1612-1616
    • /
    • 2005
  • In this paper, a Home Mess-Cleanup Robot(HMR), which has a practical function of the automatic mess-cleanup, is developed. The vacuum-cleaner had made the burden of house chore lighten but the operation labour of a vacuum-cleaner had been so severe. Recently, the cleaning robot was producted to perfectly solve the cleaning labour of a house but it also was not successful because it still had a problem of mess-cleaning, which was the clean-up of big trash and the arrangement of newspapers, clothes, etc. The cleaning robot is to just vacuum dust and small trash but has no function to arrange and take away before the automatic vacuum-cleaning. For this reason, the market for the cleaning robot is not yet built up. So, we need a design method and technological algorithm of new automatic machine to solve the problem of mess-cleanup in house. It needs functions of agile automatic navigation, novel manipulation system for mess-cleanup. The automatic navigation system has to be controlled for the full scanning of living room, to recognize the absolute position and orientation of the self, the precise tracking of the desired path, and to distinguish the mess object to clean-up from obstacle object to just avoid. The manipulator, which is not needed in the vacuum-cleaning robot, must have the functions, how to distinguish big trash to clean from mess objects to arrange, how to grasp in according to the form of mess objects, how to move to the destination in according to mess objects and arrange them. We use the RFID system to solve the problems in this paper and propose the reading algorithm of RFID tags installed in indoor objects and environments. Then, it should be an intelligent system so that the mess cleaning task can be autonomously performed in a wide variety of situations and environments. It needs to also has the entertainment functions for the good communication between the human and HMR. Finally, the good performance of the designed HMR is confirmed through the results of the mess clean-up and arrangement.

  • PDF

Implementation of Hybrid Deliberative/Reactive Control Architecture for Autonomous Navigation of a Mobile Robot in Dynamic Environments (동적 환경에서 이동로봇의 자율주행을 위한 혼합 심의/반응 제어구조의 구현)

  • Nam Hwa-Sung;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.154-160
    • /
    • 2006
  • Instantaneous reaction and intelligence are required for autonomous mobile robots to achieve multiple goals in the unpredictable and dynamic environments. Design of the appropriate control architecture and clear definitions of systems are needed to construct and control these robots. This research proposes the hybrid deliberative/reactive control architecture which consists of three layers and uses the method of software structure design. The highest layer, Deliberative Layer makes the overall run-time schedule for navigation and/or manipulation, and the middle layer, Task Execution Layer carries out various missions. The lowest layer, Reactive Layer enables a robot to react rapidly in the dynamic environment and controls the mechanical devices concurrently. This paper proposes independent system supervisors called Manager to reuse the modules so that the Manager supports common use of the system and multi-processing tasks. It is shown that the mobile robot based on the proposed control scheme can perform the basic navigation and cope with the dynamic obstacles reasonably well.

Development of Tele-operation Interface and Stable Navigation Strategy for Humanoid Robot Driving (휴머노이드 로봇의 안전한 차량 주행 전략 및 원격 제어 인터페이스 개발)

  • Shin, Seho;Kim, Minsung;Ahn, Joonwoo;Kim, Sanghyun;Park, Jaeheung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.904-911
    • /
    • 2016
  • This paper presents a novel driving system by the humanoid robot to drive a vehicle in disaster response situations. To enhance robot's capability for substituting human activities in responding to natural and man-made disaster, the one of prerequisite skills for the rescue robot is the mounted mobility to maneuver a vehicle safely in disaster site. Therefore, our driving system for the humanoid is developed in order to steer a vehicle through unknown obstacles even under poor communication conditions such as time-delay and black-out. Especially, the proposed system includes a tele-manipulation interface and stable navigation strategies. First, we propose a new type of path estimation method to overcome limited communication. Second, we establish navigation strategies when the operator cannot recognize obstacles based on Dynamic Window Approach. The effectiveness of the proposed developments is verified through simulation and experiments, which demonstrate suitable system for driving a vehicle in disaster response.