• Title/Summary/Keyword: Robot navigation

Search Result 825, Processing Time 0.034 seconds

Maze Navigation System Using Image Recognition for Autonomous Mobile Robot (자율이동로봇의 영상인식 미로탐색시스템)

  • Lee Jeong Hun;Kang Seong-Ho;Eom Ki Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.429-434
    • /
    • 2005
  • In this paper, the maze navigation system using image recognition for autonomous mobile robot is proposed. The proposed maze navigation system searches the target by image recognition method based on ADALINE neural network. The infrared sensor system must travel all blocks to find target because it can recognize only one block information each time. But the proposed maze navigation system can reduce the number of traveling blocks because of the ability of sensing several blocks at once. Especially, due to the simplicity of the algorithm, the proposed method could be easily implemented to the system which has low capacity processor.

GA-Fuzzy based Navigation of Multiple Mobile Robots in Unknown Dynamic Environments (미지 동적 환경에서 다중 이동로봇의 GA-Fuzzy 기반 자율항법)

  • Zhao, Ran;Lee, Hong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.114-120
    • /
    • 2017
  • The work present in this paper deals with a navigation problem for multiple mobile robots in unknown indoor environments. The environments are completely unknown to the robots; thus, proximity sensors installed on the robots' bodies must be used to detect information about the surroundings. The environments simulated in this work are dynamic ones which contain not only static but also moving obstacles. In order to guide the robot to move along a collision-free path and reach the goal, this paper presented a navigation method based on fuzzy approach. Then genetic algorithms were applied to optimize the membership functions and rules of the fuzzy controller. The simulation results verified that the proposed method effectively addresses the mobile robot navigation problem.

Onboard dynamic RGB-D simultaneous localization and mapping for mobile robot navigation

  • Canovas, Bruce;Negre, Amaury;Rombaut, Michele
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.617-629
    • /
    • 2021
  • Although the actual visual simultaneous localization and mapping (SLAM) algorithms provide highly accurate tracking and mapping, most algorithms are too heavy to run live on embedded devices. In addition, the maps they produce are often unsuitable for path planning. To mitigate these issues, we propose a completely closed-loop online dense RGB-D SLAM algorithm targeting autonomous indoor mobile robot navigation tasks. The proposed algorithm runs live on an NVIDIA Jetson board embedded on a two-wheel differential-drive robot. It exhibits lightweight three-dimensional mapping, room-scale consistency, accurate pose tracking, and robustness to moving objects. Further, we introduce a navigation strategy based on the proposed algorithm. Experimental results demonstrate the robustness of the proposed SLAM algorithm, its computational efficiency, and its benefits for on-the-fly navigation while mapping.

A Study on the Autonomous Navigation of Mobile Robot using Adaptive Fuzzy Control (적응 퍼지 제어를 이용한 이동 로보트의 자율 주행에 관한 연구)

  • 오준섭;박진배최윤호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.433-436
    • /
    • 1998
  • The objective of this paper is to design a adaptive fuzzy controller for autonomous navigation of mobile robot. The adaptive fuzzy controller has an advantage in data processing time and convergence speed. The basic idea of control is to induct membership function and fuzzy inference rules and to scale inducted membership function to suitable robot state. The adaptive fuzzy control method is applied to mobile robot and the simulation results show the effectiveness of our controller.

  • PDF

An Algorithm of Autonomous Navigation for Mobile Robot using Vision Sensor and Ultrasonic Sensor (비전 센서와 초음파 센서를 이용한 이동 로봇의 자율 주행 알고리즘)

  • Lee, Jae-Kwang;Park, Jong-Hun;Heo, Uk-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.19-22
    • /
    • 2003
  • This paper proposes an algorithm for navigation of an autonomous mobile robot with vision sensor. For obstacle avoidance, we used a curvature trajectory method. Using this method, translational and rotational speeds are controlled independently and the mobile robot traces a smooth curvature trajectory that consists of circle trajectories to a target point. While trying to avoid obstacles, the robot fan be goal-directed using curvature trajectory.

  • PDF

Navigation of a mobile robot with stereo camera (두대의 카메라를 장착한 이동 로보트의 주행)

  • 이병일;신유식;오상록;임준홍;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.98-102
    • /
    • 1988
  • A simple look and move type navigation algorithm with obstacle avoidance was implemented on a mobile robot equipped with two cameras. The robot gets a difference of two images from each camera and detects the position represented on the horizontal line and width of each obstacle in a certain distance. The obtained informations of obstacles are used to select a next intermediate point and to plan a path to it. Robot motion is simplified to straight line motion and rotation.

  • PDF

Optimal Path Planning of Autonomous Mobile Robot Utilizing Potential Field and Fuzzy Logic (퍼지로직과 포텐셜 필드를 이용한 자율이동로봇의 최적경로계획법)

  • Park, Jong-Hoon;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.11-14
    • /
    • 2003
  • In this paper, we use Fuzzy Logic and Potential field method for optimal path planning of an autonomous mobile robot and apply to navigation for real-time mobile robot in 2D dynamic environment. For safe navigation of the robot, we use both Global and Local path planning. Global path planning is computed off-line using sell-decomposition and Dijkstra algorithm and Local path planning is computed on-line with sensor information using potential field method and Fuzzy Logic. We can get gravitation between two feature points and repulsive force between obstacle and robot through potential field. It is described as a summation of the result of repulsive force between obstacle and robot which is considered as an input through Fuzzy Logic and gravitation to a feature point. With this force, the robot fan get to desired target point safely and fast avoiding obstacles. We Implemented the proposed algorithm with Pioneer-DXE robot in this paper.

  • PDF

Remote Navigation and Monitoring System for Mobile Robot Using Smart Phone (스마트 폰을 이용한 모바일로봇의 리모트 주행제어 시스템)

  • Park, Jong-Jin;Choi, Gyoo-Seok;Chun, Chang-Hee;Park, In-Ku;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.207-214
    • /
    • 2011
  • In this paper, using Zigbee-based wireless sensor networks and Lego MindStorms NXT robot, a remote monitoring and navigation system for mobile robot has been developed. Mobile robot can estimate its position using encoder values of its motor, but due to the existing friction and shortage of motor power etc., error occurs. To fix this problem and obtain more accurate position of mobile robot, a ultrasound module on wireless sensor networks has been used in this paper. To overcome disadvantages of ultrasound which include straightforwardness and narrow detection coverage, we rotate moving node attached to mobile robot by $360^{\circ}$ to measure each distance from four fixed nodes. Then location of mobile robot is estimated by triangulation using measured distance values. In addition, images are sent via a network using a USB Web camera to smart phone. On smart phones we can see location of robot, and images around places where robot navigates. And remote monitoring and navigation is possible by just clicking points at the map on smart phones.

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.

A Real-Time Obstacle Avoidance of Mobile Robot Using Nearness Diagram, Limit-Cycle and Vector Field Method (Nearness Diagram, Limit-Cycle 및 벡터장법을 이용한 이동로봇의 실시간 장애물 회피)

  • Kim, Pil-Gyeom;Jung, Yoon-Ho;Yoon, Jae-Ho;Jie, Min-Seok;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • In this paper, we propose a novel navigation method combined Nearness Diagram, Limit-Cycle method and the Vector Field Method for avoidance of unexpected obstacles in the dynamic environment. The Limit-Cycle method is used to obstacle avoidance in front of the robot and the Vector Field Method is used to obstacle avoidance in the side of robot. And the Nearness Diagram Navigation is used to obstacle avoidance in the nearness area of the robot. The performance of the proposed method is demonstrate by simulations.

  • PDF