• 제목/요약/키워드: Robot motion

검색결과 1,601건 처리시간 0.029초

Door opening control using the multi-fingered robotic hand for the indoor service robot PSR

  • Rhee, Chang-Ju;Shim, Young-Bo;Chung, Woo-Jin;Kim, Mun-Sang;Park, Jong-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1093-1098
    • /
    • 2003
  • In this paper, a practical methodology of hand-manipulator motion coordination for indoor service robot is introduced. This paper describes the procedures of opening door performed by service robot as a noticeable example of motion coordination. This paper presents well-structured framework for hand-manipulator motion coordination, which includes intelligent sensor data interpretation, object shape estimation, optimal grasping, on-line motion planning and behavior-based task execution. This proposed approach is focused on how to integrate the respective functions in harmony and enable the robot to complete its operation under the limitation of usable resources. As a practical example of implementation, the successful experimental results in opening door whose geometric parameters are unknown beforehand are provided.

  • PDF

바이패드 로봇의 안정적인 거동을 위한 제어 (Biped Robot Control for Stable Walking)

  • 김경대;박종형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.311-314
    • /
    • 1995
  • Biped locomotion can be simply modeled as a linear inverted pendulum mode. This model considers only the CG (center of gravity) of the entire system. But in real biped robot systems, the free-leg motion dynamics is not negligible. So if its dynamics is not considered in designing the reference CG motion, it is badly influence to the ZMP(zero moment point) position of the biped robot walking in the sagittal plane. Therefore, we modeled the biped locomotion similar to the linear inverted pendulum mode but considered the predetermined free-leg dynamics. To verify that the proposed biped locomotion is more stable than the linear inverted pendulum mode, we constructed a biped robot simulator and designed a serco controller to track both the reference motion of the free leg and the reference motion of CG of the biped robot using the computed torque control low. And through simulations, we verified that the proposed walking is better in stability than the one based on the linear inverted pendulum mode.

  • PDF

상지 재활을 위한 3-D 로봇 시스템의 개발 (Development of a 3-D Rehabilitation Robot System for Upper Extremities)

  • 신규현;이수한
    • 한국정밀공학회지
    • /
    • 제26권4호
    • /
    • pp.64-71
    • /
    • 2009
  • A 3-D rehabilitation robot system is developed in this paper. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for enabling occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system, which is driven by actuators, has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. Passive motion mode experiments have been performed to evaluate the proposed robot system. The results of the experiments show and excellent performance in simulating spasticity of patients.

대화형 감성 로봇의 메커니즘 설계 (Mechanism Design of the Interactive Emotional Robot)

  • 김연훈;윤석준;이동연;곽윤근
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2001년도 추계학술대회 논문집
    • /
    • pp.233-238
    • /
    • 2001
  • The mechanism design of the interactive emotional robot has been carried out. The two-wheeled inverted pendulum type mechanism was adopted to improve the mobility and make the innate clumsy monoaxial bicycle motion. Even though the system is unstable in itself, it is expected for the robot to move freely in a plane, keeping the upright position only with two wheels. Two motors attached on head can make 4 motion sets, and two motors on the wheels can make 8. Therefore, 32 independent motion sets can be achieved from the robot to communicate the emotions with humans. The motion's equation of the robot was derived based on nonholonomic dynamics, and the necessary power to the wheel's rotational axis was found by simulation.

  • PDF

2축 직교좌표 로봇에서 2축 직선 운동 가이드가 로봇의 기계적 성능에 미치는 영향 (Effect of 2nd Axis Linear Motion Guide on Mechanical Performance of Robot in 2-Axis Cartesian Coordinate Robot)

  • 이종신
    • 한국기계기술학회지
    • /
    • 제13권1호
    • /
    • pp.95-103
    • /
    • 2011
  • Robots in various types carry and assemble parts through repeatedly and accurately moving to stored locations by combining linear motions. And, linear systems are used in orthogonal axes of robots and driven via ball screws, such as 2-axis cartesian coordinate robot in this paper. This paper presents the effect of the linear motion guide that is used in $2^{nd}$ axis in 2-axis cartesian coordinate robot. Some simulation results show that the linear motion guide influence greatly in robot performance such as the nominal life of linear guide. When use LM guide that have capacity near in $2^{nd}$ axis, this paper show that the nominal life on LM block of $1^{st}$ axis increases 37.4% and that the specification of $2^{nd}$ axis LM guide influences greatly the nominal life of $1^{st}$ axis LM block.

모션센서를 이용한 로봇의 디지털 영상 보정 기술 (Digital Image Stabilization Technique of Robot using Motion Sensor)

  • 오정석;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.317-322
    • /
    • 2009
  • 로봇은 일정 속도 이상의 움직임을 가지면 필연적으로 진동을 하기 때문에 장착된 카메라의 경우 이미지가 흔들려 더 이상 로봇의 눈 역할을 수행하지 못하게 된다. 따라서 흔들리는 영상의 안정화를 위한 방법을 연구가 필요해졌다. 영상에서 글로벌 모션 벡터를 계산하여 안정화하는 방법이 존재하지만 이는 프로세서가 처리해야 하는 데이터양이 많아지기 때문에 임베디드 로봇의 사양의 한계로 인하여 실시간으로 영상을 송출하는데 큰 어려움이 있다. 이를 보완하기 위하여 모션벡터를 사용하지 않는 모션센서를 통한 영상 안정화를 제안한다. 모션센서를 통하여 로봇의 진행과 관계없는 움직임을 추출하고 추출한 움직임을 영상에서 제거하는 방법이다.

다중 이동 로봇의 중앙 감시에 의한 충돌 회피 동작조정 방법 (Method for Collision Avoidance Motion Coordination of Multiple Mobile Robots Using Central Observation)

  • 고낙용;서동진
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권4호
    • /
    • pp.223-232
    • /
    • 2003
  • This paper presents a new method driving multiple robots to their goal position without collision. Each robot adjusts its motion based on the information on the goal location, velocity, and position of the robot and the velocity and position of the .other robots. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the following factors: the distance from the robot to the other robots, velocity of the robot and the other robots. To implement the concept in moving robot avoidance, relative distance between the robots is derived. Our method combines the relative distance with an artificial potential field method. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, the usual potential field method sometimes fails preventing collision or causes hasty motion, because it initiates avoidance motion later than the proposed method. The proposed method can be used to move robots in a robot soccer team to their appropriate position without collision as fast as possible.

바퀴구름운동을 고려한 역진자 로봇의 주행 (Driving of Inverted Pendulum Robot Using Wheel Rolling Motion)

  • 이준호;박치성;황종명;이장명
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.110-119
    • /
    • 2010
  • This paper aims to add the autonomous driving capability to the inverted pendulum system which maintains the inverted pendulum upright stably. For the autonomous driving from the starting position to the goal position, the motion control algorithm is proposed based on the dynamics of the inverted pendulum robot. To derive the dynamic model of the inverted pendulum robot, a three dimensional robot coordinate is defined and the velocity jacobian is newly derived. With the analysis of the wheel rolling motion, the dynamics of inverted pendulum robot are derived and used for the motion control algorithm. To maintain the balance of the inverted pendulum, the autonomous driving strategy is derived step by step considering the acceleration, constant velocity and deceleration states simultaneously. The driving experiments of inverted pendulum robot are performed while maintaining the balance of the inverted pendulum. For reading the positions of the inverted pendulum and wheels, only the encoders are utilized to make the system cheap and reliable. Even though the derived dynamics works for the slanted surface, the experiments are carried out in the standardized flat ground using the inverted pendulum robot in this paper. The experimental data for the wheel rolling and inverted pendulum motions are demonstrated for the straight line motion from a start position to the goal position.

손동작 인식 로봇 동작 제어 (A motion control of robot manipulator by hand glove gesture)

  • 안효민;이용규;김형종;현웅근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.566-569
    • /
    • 2022
  • 비젼 카메라를 이용하여 작업자의 장갑 칼라 및 위치를 인식하고 이를 기반으로 로봇팔의 모션을 제어하는 시스템을 개발하였다. 시스템은 물체의 영상정보를 인식하는 카메라, 로봇팔 제어 알고리즘, 자체 로봇팔 및 제어 시스템으로 구성된다. 카메라는 작업자가 착용한 장갑의 모양과 색을 인지하여 크기 및 위치정보를 출력하게 되며, 본 연구에서는 이러한 위치 및 물체를 둘러싼 크기 정보를 이용하여 로봇 팔의 모션 속도를 제어한다. 연구 방법의 검증은 6축 로봇으로 실행하였으며, 조종자의 손동작 조종에 의한 실험을 통해 제안한 영상정보 제어 및 로봇 선단 제어 방법이 성공적으로 동작함을 확인하였다.

  • PDF

적응 제어 기반 Portable 용접 로봇 시뮬레이터 개발 (Development of a Motion Simulator for Portable Type Welding Robot Based on Adaptive Control)

  • 구남국;하솔;노명일
    • 대한조선학회논문집
    • /
    • 제49권5호
    • /
    • pp.400-409
    • /
    • 2012
  • It is not easy to know the accurate mass and mass moment of inertia of robot. Because of this uncertainty, error may exist when we control the robot based on the inaccurate mass information. Moreover the properties of the portable robot can change during its operation. Therefore we developed the motion simulator based on the adaptive control. First, the computed torque control was carried out in order to minimize an error between target angles and real angles. The computed torque control is based on the equation of robot motion, which is derived from the Lagrange-Euler equation. To minimize the error between the real model and the approximated model, the adaptive control was carried out. During this simulation, the interference check was also carried out. The interference check verifies that the robot can move successfully without any collision.