• 제목/요약/키워드: Robot motion

검색결과 1,601건 처리시간 0.033초

FPGA를 이용한 범용 모션 컨트롤러의 개발 (Development of a General Purpose Motion Controller Using a Field Programmable Gate Array)

  • 김성수;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.73-80
    • /
    • 2004
  • We have developed a general purpose motion controller using an FPGA(Field Programmable Gate Array). The multi-PID controllers and GUI are implemented as a system-on-chip for multi-axis motion control. Comparing with the commercial motion controller LM 629, since it has multi-independent PID controllers, we have several advantages such as space effectiveness, low cost and lower power consumption. In order to test the performance of the proposed controller, motion of the robot hand is controlled. The robot hand has three fingers with 2 joints each. Finger movements show that tracking was very effective. Another experiment of balancing an inverted pendulum on a cart has been conducted to show the generality of the proposed FPGA PID controller. The controller has well maintained the balance of the pendulum.

이동로봇의 동작 제어를 위한 하이브리드 시스템 제어에 관한 연구 (Study on Hybrid Control for Motion Control of Mobile Robot Systems)

  • 임미섭;임진모;임준홍;오상록
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2348-2350
    • /
    • 1998
  • The hybrid control system for a wheeled mobile robot with nonholonomic constraints to perform a cluttered environment maneuver is proposed. The proposed hybrid control system consists of a continuous state system for the trajectory control, a discrete state system for the motion and orientation control, and an interface control system for the interaction process between the continuous dynamics and the discrete dynamics The continuous control systems are modeled by the switched systems with the control of driving wheels, and the digital automata for motion control are modeled and implemented by the abstracted motion of mobile robot. The motion control tasks such as path generation, motion planning, and trajectory control for a cluttered environment are investigated as the applications by simulation studies.

  • PDF

SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발 (Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM)

  • 유성엽;유동연;박예슬;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권12호
    • /
    • pp.491-498
    • /
    • 2019
  • 디지털 트윈은 현실 세계의 물리적인 사물을 컴퓨터상에 동일하게 가상화시키는 기술로써, IoT을 통해 센서 데이터를 수집하고, 수집한 데이터를 활용하여 물리적인 사물과 가상 사물을 양방향으로 연결을 할 수 있게 한다. 디지털 트윈 기술은 가상 모델의 시뮬레이션을 통해 동작을 조정하고 환경변화에 대한 대응을 미리 실험하여 위험성을 최소화할 수 있는 장점을 지닌다. 최근 인공지능이나 기계학습에 관련된 기술들이 주목받기 시작하면서, 물리적인 사물의 동작을 가상화하여 가상 모델을 관찰하고 다양한 시나리오를 적용하려는 시도가 증가하고 있다. 특히, 인더스트리 4.0에서 공장자동화의 핵심인 협력 로봇의 디지털 트윈을 구축하기 위해서는 로봇의 동작을 인지하는 과정이 필수적으로 요구된다. 로봇의 동작을 인지하기 위한 모델링 기반의 연구에 비해 센서 데이터 기반으로 동작을 예측하는 연구는 미비한 상황이다. 따라서 본 논문에서는 로봇의 동작을 인지하기 위해 가정용 협력 로봇에서 전류 및 관성 센서 데이터를 수집하기 위한 실험 환경을 구축하고, 수집한 센서 데이터를 기반으로 한 동작 예측 모델을 제안하고자 한다. 제안하는 방식은 조인트 위치 기반으로 로봇의 동작 명령어를 9가지로 분류하고 전류와 관성 센서값을 사용하여 학습을 통해 예측하는 방식이다. 이때, 학습에 사용되는 데이터는 협력 로봇이 동작 명령어의 입력 파라미터에 마진을 가지고 작동할 때 수집되는 센서값이다. 이를 통해, 동일한 경로를 따라 이동하는 9가지 동작뿐만 아니라 각 동작과 비슷한 경로를 따라 이동하는 동작에 대해서도 예측하는 모델을 구축하였다. SVM을 이용하여 학습한 결과, 모델의 성능은 평균적으로 정확도, 정밀도, 및 재현율이 모두 97%로 평가되었다.

허리 구조를 갖는 복합 바퀴-다리 이동형 로봇의 설계 (Design of Hybrid Wheeled and Legged Mobile Robot with a Waist Joint)

  • 최대규;정동혁;김용태
    • 한국지능시스템학회논문지
    • /
    • 제24권3호
    • /
    • pp.304-309
    • /
    • 2014
  • 본 논문에서는 허리 구조를 갖는 복합 바퀴-다리 이동형 로봇의 설계 방법을 제안한다. 제안된 복합 이동형 로봇은 비평탄 및 평탄 지형에서의 효과적인 이동을 위하여 로봇의 다리에 바퀴가 결합된 복합 바퀴-다리 구조와 로봇 주행 중 보행 자세로의 안정적인 전환과 비평탄 지형에서 기구적인 제한의 개선을 위하여 허리 관절을 갖는 구조로 설계하였다. 또한 다양한 지형을 인지하기 위하여 LRF센서, PSD센서, CCD 카메라를 사용하였다. 제안한 로봇 시스템의 검증을 위해 지형별 주행과 보행 자세를 선택할 수 있는 운동 계획 기법을 제안하였다. 실제 복합 바퀴-다리 이동형 로봇을 설계 및 제작하고, 제안된 운동계획을 사용한 실험을 통해 지형에 따른 효율적인 이동 성능을 검증하였다.

On-line Motion Planner for Multi-Agents based on Real-Time Collision Prognosis

  • Ji, Sang-Hoon;Kim, Ji-Min;Lee, Beom-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.74-79
    • /
    • 2005
  • In this paper, we propose a novel approach to decentralized motion planning and conflict-resolution for multiple mobile agents working in an environment with unexpected moving obstacles. Our proposed motion planner has two characteristics. One is a real-time collision prognosis based on modified collision map. Collision map is a famous centralized motion planner with low computation load, and the collision prognosis hands over these characteristics. And the collision prognosis is based on current robots status, maximum robot speeds, maximum robot accelerations, and path information produced from off-line path planning procedure, so it is applicable to motion planner for multiple agents in a dynamic environment. The other characteristic is that motion controller architecture is based on potential field method, which is capable of integrating robot guidance to the goals with collision avoidance. For the architecture, we define virtual obstacles making delay time for collision avoidance from the real-time collision prognosis. Finally the results obtained from realistic simulation of a multi-robot environment with unknown moving obstacles demonstrate safety and efficiency of the proposed method.

  • PDF

이족 로봇의 무게 중심 수평 위치 고속 이동을 위한 실시간 힘 제어 기법 (Real-Time Force Control of Biped Robot to Generate High-Speed Horizontal Motion of Center of Mass)

  • 이이수;박재흥
    • 로봇학회논문지
    • /
    • 제11권3호
    • /
    • pp.183-192
    • /
    • 2016
  • Generating motion of center of mass for biped robots is a challenging issue since biped robots can easily lose balance due to limited contact area between foot and ground. In this paper, we propose force control method to generate high-speed motion of the center of mass for horizontal direction without losing balancing condition. Contact consistent multi-body dynamics of the robot is used to calculate force for horizontal direction of the center of mass considering balance. The calculated force is applied for acceleration or deceleration of the center of mass to generate high speed motion. The linear inverted pendulum model is used to estimate motion of the center of mass and the estimated motion is used to select either maximum or minimum force to stop at goal position. The proposed method is verified by experiments using 12-DOF torque controlled human sized legged robot.