• Title/Summary/Keyword: Robot motion

Search Result 1,601, Processing Time 0.025 seconds

Kinematic Modeling for a Type of Mobile Robot using Differential Motion Transformation (미소운동 변환방법을 이용한 몇가지 이동로봇의 기구학 모델)

  • Park, Jae-Han;Kim, Soon-Chul;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1145-1151
    • /
    • 2013
  • Kinematic modeling is a prerequisite for motion planning and the control of mobile robots. In this paper, we proposed a new method of kinematic modeling for a type of mobile robot based on differential motion transformation. The differential motion implies a small translation and rotation in three-dimensional space in a small time interval. Thus, transformation of the differential motion gives the velocity relationship, i.e., Jacobian between two coordinate frames. Since the theory of the differential motion transformation is well-developed, it is useful for the systematic velocity kinematic modeling of mobile robots. In order to show the validity for application of the differential motion transformation, we obtained velocity kinematic models for a type of exemplar mobile robot including spherical ballbots.

Omni-Directional Motion Modeling of Concrete Finishing Trowel Robot with Circular Trowels (회전 트로웰의 원판형 가정을 통한 콘크리트 미장로봇의 전방향 운동 모델링)

  • Shin, Dong-Hun;Kim, Ho-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.454-461
    • /
    • 1999
  • A concrete floor trowel machine, developed in the U.S in 1990's, consists of only two rotary trowels, and doesn't need any other mechanism for motion such as wheels. When the machine flattens a concrete floor with its rotary trowels, the machine can move in any direction by utilizing the unbalanced friction forces occurring between the rotary wheels and the floor when the trowels are tilted in appropriate directions. In order to automate the trowels machine, this paper proposed the self-propulsive concrete finishing trowel robot which has twin trowels. For the control of the robot, this paper discussed the following. Firstly, the dynamics model of the driving frictional force applied on each trowel from the floor is derived. Secondly, the relationship between the driving force for the robot and the control variable of the robot is derived. Finally, the basic motion of the robot are realized by using the obtained relationship. This paper figures out how the concrete floor finishing robot with tow trowels moves and will contribute to realizing it.

  • PDF

Optimization of Whole Body Cooperative Posture for an 18-DOF Humanoid Robot Using a Genetic Algorithm (유전알고리즘을 이용한 18자유도 인간형 로봇의 자세 최적화)

  • Choi, Kook-Jin;Hong, Dae-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1029-1037
    • /
    • 2008
  • When a humanoid robot pushes an object with its force, it is essential to adequately control its posture so as to maximize the surplus torque far all joints. For such purpose, this study proposes a method to find an optimal posture of a humanoid robot using a genetic algorithm in such a way that the surplus torque for all joints is maximized. In this study, pushing motion of an 18-DOF humanoid robot is considered. When the robot takes a cooperative motion to push an object, the palms and soles are assumed to be fixed at the object and ground respectively, and are subjected to sense the reaction force from the object and the ground. Then, the torques for all joints are calculated and reflected to fitness function of the genetic algorithm. To verify the effectiveness of the proposed method, a number of simulations with different fitness functions are carried out. The simulation result shows that the proposed method can be adopted to find optimized posture in cooperative motion of a humanoid robot.

Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam (격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어)

  • Lee, Gun-You;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

Robot Control Method in Parameter Space Adopting Biomimetics (생체모방기술을 접목한 파라미터 공간에서의 로봇제어 기법)

  • Kim, Heejoong
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.16-23
    • /
    • 2018
  • In the paper, a robot control technique by employing Biomimetics is described. Rhythmic movements of the diving beetle's leg were analyzed and the formulated equations on the motion were drawn by applying Fourier least mean square fitting method. Simple control parameters were defined by comparing the observed locomotion through a motion capture system and reproduced motions according to changes in the values in the equation. Subsequently, the correlation of each parameter was discovered and expressed in a parameter space. Apparently, it was confirmed that various bio-mimicking motions can simply be generated for controlling the robot. Additionally, robot designing based on adopting structural advantages which the living organism possess have been briefly introduced. The proposed bio-mimicking motion generating technique was observed to be applicable to robot system developments under various environmental conditions.

KisBot II : New Spherical Robot with Curved Two-pendulum Driving Mechanism (두 개의 곡선형 펜들럼 주행 메커니즘을 갖는 구형로봇)

  • Yoon, Joong-Cheol;Ahn, Sung-Su;Lee, Yun-Jung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.323-333
    • /
    • 2011
  • Due to the limited pendulum motion range, the conventional one-pendulum driven spherical robot has limited driving capability. Especially it can not drive parallel direction with center horizontal axis to which pendulum is attached from stationary state. To overcome the limited driving capability of one-pendulum driven spherical robot, we introduce a spherical robot, called KisBot II, with a new type of curved two-pendulum driving mechanism. A cross-shape frame of the robot is located horizontally in the center of the robot. The main axis of the frame is connected to the outer shell, and each curved pendulum is connected to the end of the other axis of the frame respectively. The main axis and pendulums can rotate 360 degrees inside the sphere orthogonally without interfering with each other, also the two pendulums can rotate identically or independent of each other. Due to this driving mechanism, KisBot II has various motion generation abilities, including a fast steering, turning capability in place and during travelling, and four directions including forward, backward, left, and right from stationary status. Experiments for several motions verify the driving efficiency of the proposed spherical robot.

A Haptic Master-slave Robot System : Experimental Performance Evaluation for Medical Application (의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가)

  • Oh, Jong-Seok;Shin, Won-Ki;Nguyen, Phuong-Bac;Uhm, Chang-Ho;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • In this work, 4-DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery(MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4-DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

A Haptic Master-Slave Robot System : Experimental Performance Evaluation for Medical Application (의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가)

  • Oh, Jong-Seok;Shin, Won-Ki;Nguyen, Phuong-Bac;Uhm, Chang-Ho;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.421-427
    • /
    • 2012
  • In this work, 4 DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery (MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4 DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

  • PDF

Discontinuous Zigzag Gait Planning of Quadruped Walking Robot with an Articulated Spine (허리관절을 가지는 4족보행로봇의 지그재그 걸음새 계획)

  • 박세훈;하영호;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.703-710
    • /
    • 2004
  • This paper presents discontinuous zigzag gait analysis for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. An articulated spine walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. First, we suggest a kinematic modeling of an articulated spine robot which has new parameters such as a waist-joint angle, a rotate angle of a front and rear body and describe characteristics of gait using an articulated spine. Next, we compared the difference of walking motion of newly modeled robot with that of a single rigid-body robot and analyzed the gait of an articulated spine robot using new parameters. On the basis of above result, we proposed a best walking motion with maximum stability margin. To show the effectiveness of proposed gait planning by simulation, firstly the fastest walking motion is identified based on the maximum stride, because the longer the stride, the faster the walking speed. Next, the gait stability margin variation of an articulated spine robot is compared according to the allowable waist-joint angle.

Development of Intelligent Bed Robot System

  • Oh, Chang-Mok;Seo, Kap-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1535-1538
    • /
    • 2004
  • In this paper, an Intelligent Bed Robot System (IBRS) is proposed, that is a special bed equipped with robot manipulator. To assist a patient using IBRS, pose and motion estimation process is fundamental. It is designed to help the elderly and the disabled for their independent life in bed without other assistants. For this purpose, we use the pressure sensor distributed mattress for detecting the change of motion on the bed. Using that data, we control the robot arm to move to the appropriate position and serve to the user. In addition, we can estimate the user's intention based on the change of pressure and use those data to control the robot arm guide.

  • PDF