• Title/Summary/Keyword: Robot joint

Search Result 891, Processing Time 0.026 seconds

Discontinuous Zigzag Gait Planning of Quadruped Walking Robot with an Articulated Spine (허리관절을 가지는 4족보행로봇의 지그재그 걸음새 계획)

  • 박세훈;하영호;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.703-710
    • /
    • 2004
  • This paper presents discontinuous zigzag gait analysis for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. An articulated spine walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. First, we suggest a kinematic modeling of an articulated spine robot which has new parameters such as a waist-joint angle, a rotate angle of a front and rear body and describe characteristics of gait using an articulated spine. Next, we compared the difference of walking motion of newly modeled robot with that of a single rigid-body robot and analyzed the gait of an articulated spine robot using new parameters. On the basis of above result, we proposed a best walking motion with maximum stability margin. To show the effectiveness of proposed gait planning by simulation, firstly the fastest walking motion is identified based on the maximum stride, because the longer the stride, the faster the walking speed. Next, the gait stability margin variation of an articulated spine robot is compared according to the allowable waist-joint angle.

Fuzzy PI with Gain Scheduling Control for a Flexible Joint Robot

  • Hidenori, Kimura;Lee, Sang-Gu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.2-93
    • /
    • 2001
  • This paper presents the implementation of fuzzy PI gain scheduling controller (FPICGS) for controlling flexible joint robot arms with uncertainties from time-varying load. The term FPICGS is called based on a combination of fuzzy PI control scheme with a set of rule bases. Principle of design for a FPICGS is given along with the implementation of the designed computer aided control system. The experiment reveals an effectiveness of the proposed control scheme for flexible joint robot arms driven by a DC motorhooked with a spring which both parameters are completely unknown parameters ...

  • PDF

Fault-Tolerant Gait Generation of Hexapod Robots for Locked Joint Failures (관절고착고장에 대한 육각 보행 로봇의 내고장성 걸음새 생성)

  • Yang Jung-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.131-140
    • /
    • 2005
  • Fault-tolerant gait generation of a hexapod robot with crab walking is proposed. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. Due to the reduced workspace of a failed leg, fault-tolerant crab walking has a limitation in the range of heading direction. In this paper, an accessible range of the crab angle is derived for a given configuration of the failed leg and, based on the principles of fault-tolerant gait planning, periodic crab gaits are proposed in which a hexapod robot realizes crab walking after a locked joint failure, having a reasonable stride length and stability margin. The proposed crab walking is then applied to path planning on uneven terrain with positive obstacles. i.e., protruded obstacles which legged robots cannot cross over but have to take a roundabout route to avoid. The robot trajectory should be generated such that the crab angle does not exceed the restricted range caused by a locked joint failure.

Virtual Model Control of a Posture Balancing Biped Acrobatic Robot with Fuzzy Control for Pendulum Swing Motion Generation (진자 흔들기 퍼지 제어기가 추가된 가상모델 제어 2족 곡예로봇 자세 균형 제어)

  • Lee, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.904-911
    • /
    • 2001
  • A broomstick swinging biped acrobatic controller is designed and simulated to show capability of the system of controllers: virtual model controller is employed for the robot\`s posture balancing control while a higher level fuzzy controller modulate the one of the virtual model controller\`s parameter for the pendulum swinging motion generation. The robot is of 7 degree-of-freedom, 8-link planar bipedal robot having two slim legs and a body. Each leg consists of a hip joint, a knee joint, an ankle joint and the body has a free joint at the top in the head at which a freely rotating broomstick is attached. We assume that the goal for the acrobat robot is to maintain a body balance in the sagittal plane while swinging up the freely up the freely rotating pendulum. We also assume that the actuators in the joints are all ideal torque generators. The proposed system of controllers satisfies the goal and the simulation results are presented.

  • PDF

A Compliance Control Method for Robot Hands with Consideration of Decoupling among Fingers/Joints (손가락/관절 간의 기구학적 독립을 고려한 로봇 손의 컴플라이언스 제어 방법)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Suh, Il-Hong;Oh, Sang-Rok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.568-577
    • /
    • 2000
  • In this paper for an object grasped by a robot hand to work in stiffness control domain we first investigate the number of fingers for successful stiffness modulation in the object operational space. Next we propose a new compliance control method for robot hands which consist of two steps. RIFDS(Resolved Inter-Finger Decoupling Solver) is to decompose the desired compliance characteristic specified in the op-erational space into the compliance characteristic in the fingertip space without inter-finger coupling and RIJDS(Resolved Inter-Joint Decoupling Solver) is to decompose the fingertip space without inter-finger coupling and RIJDS(Resolved inter-Joint Decoupling Solver) is to decompose the compliance characteristic in the finger-tip space into the compliance characteristic given in the joint space without inter-joint coupling. Based on the analysis results the finger structure should be biominetic in the sense that either kniematic redundancy or force redundancy are required to implement the proposed compliance control scheme, Five-bar fingered robot hands are used as an illustrative example to implement the proposed compliance control method. To show the effectiveness of the proposed compliance control method simulations are performed for two-fingered and three-fingered robot hands.

  • PDF

GA Based Locomotion Method for Quadruped Robot with Waist Joint to Walk on the Slop (허리 관절을 갖는 4족 로봇의 GA 기반 경사면 보행방법)

  • Choi, Yoon-Ho;Kim, Dong-Sub;Kim, Guk-Hwa
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1665-1674
    • /
    • 2013
  • In this paper, we propose a genetic algorithm(GA) based locomotion method of a quadruped robot with waist joint, which makes a quadruped robot walk on the slop efficiently. In the proposed method, we first derive the kinematic model of a quadruped robot with waist joint and then set the gene and the fitness function for GA. In addition, we determine the best attitude for a quadruped robot and the landing point of a foot in the walk space, which has the optimal energy stability margin(ESM). Finally, we verify the effectiveness of the proposed method by comparing with the performance of the previous method through the computer simulations.

Design of a Humanoid Robot-hand with MEC-Joint (멕조인트를 이용한 다관절 로봇핸드 설계)

  • Lee, Sang-Mun;Lee, Kyoung-Don;Min, Heung-Ki;Noh, Tae-Sung;Kim, Sung-Tae
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • A humanoid robot hand with one thumb and two fingers has been developed. Each finger has the specially designed compact joints, called "MEC Joint", which convert the rotation of a motor to the swing motion of a pendulum. The robot hand with the MEC Joints is compact and relatively light but strong enough to grasp objects in the same manner as human being does in daily activities. In this paper the kinematic model and the torque characteristics of the MEC Joint are presented and compared with the results of the dynamic simulation and the dynamometer test. The dynamic behavior of the thumb and two fingers with MEC Joints are also presented by computer simulation.

Design of an Adaptive Fuzzy Backstepping Controller for a Single-Link Flexible-Joint Robot (단일 축 유연 관절 로봇의 적응 퍼지 백스테핑 제어기 설계)

  • Kim, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.62-70
    • /
    • 2008
  • An adaptive fuzzy backstepping controller is proposed for the motion control for a single-link flexible-joint robot in the presence of parametric uncertainties. Fuzzy logic system is used to approximate the uncertainties of functions and a backstepping technique is employed to deal with the mismatched problem. A compensation controller is also employed to estimates the bound of approximation error so that the shattering effect of the control effort can be reduced. Thus the asymptotic stability of the closed loop control system can be obtained based on a Lyapunov synthesis approach. Numerical simulation results for a single-link flexible-joint robot are included to show the effectiveness of proposed controller.