• Title/Summary/Keyword: Robot hands

Search Result 98, Processing Time 0.029 seconds

A Study on Real Time Control of Moving Stuff Action Through Iterative Learning for Mobile-Manipulator System

  • Kim, Sang-Hyun;Kim, Du-Beum;Kim, Hui-Jin;Im, O-Duck;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.415-425
    • /
    • 2019
  • This study proposes a new approach to control Moving Stuff Action Through Iterative Learning robot with dual arm for smart factory. When robot moves object with dual arm, not only position of each hand but also contact force at surface of an object should be considered. However, it is not easy to determine every parameters for planning trajectory of the an object and grasping object concerning about variety compliant environment. On the other hand, human knows how to move an object gracefully by using eyes and feel of hands which means that robot could learn position and force from human demonstration so that robot can use learned task at variety case. This paper suggest a way how to learn dynamic equation which concern about both of position and path.

Imitation Learning of Bimanual Manipulation Skills Considering Both Position and Force Trajectory (힘과 위치를 동시에 고려한 양팔 물체 조작 솜씨의 모방학습)

  • Kwon, Woo Young;Ha, Daegeun;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Large workspace and strong grasping force are required when a robot manipulates big and/or heavy objects. In that situation, bimanual manipulation is more useful than unimanual manipulation. However, the control of both hands to manipulate an object requires a more complex model compared to unimanual manipulation. Learning by human demonstration is a useful technique for a robot to learn a model. In this paper, we propose an imitation learning method of bimanual object manipulation by human demonstrations. For robust imitation of bimanual object manipulation, movement trajectories of two hands are encoded as a movement trajectory of the object and a force trajectory to grasp the object. The movement trajectory of the object is modeled by using the framework of dynamic movement primitives, which represent demonstrated movements with a set of goal-directed dynamic equations. The force trajectory to grasp an object is also modeled as a dynamic equation with an adjustable force term. These equations have an adjustable force term, where locally weighted regression and multiple linear regression methods are employed, to imitate complex non-linear movements of human demonstrations. In order to show the effectiveness our proposed method, a movement skill of pick-and-place in simulation environment is shown.

Compliance Analysis for Effective handling of Peg-In/Out-Hole Tasks Using Robot Hands (로봇 손을 이용한 팩의 조립 및 분해 작업을 효율적으로 수행하기 위한 컴플라이언스 해석)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Suh, Il-Hong;Oh, Sang-Rok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.777-785
    • /
    • 2000
  • This paper provides a guideline for the determination of compliance characteristics and the proper location of the compliance center in typical peg-in-hole and peg-out-hole tasks using hands. We first observe the fact that some of coupling stiffness elements cannot be planned arbitrarily. The given peg-in/out-hole tasks are classified into two contact styles. Then, we analyze concluded of the operational siffness matrix, which achieve the give peg-in/out-hole tasks effectively for each case. It is concluded that the location of the compliance center on the peg and the coupling stiffness element existing between the translational and the rotational direction play ompliance on the peg and the coupling siffness element existing between the translational and the rotational direction play important roles for successful peg-in/out-hole tasks. The analytic results verified through simulations.

  • PDF

A Study on Humanoid Robot Hand System and Real-Time Grasp Motion Control (인간형 로봇 손 시스템과 실시간 파지 동작 제어에 관한 연구)

  • 임미섭;오상록;손재범;이병주;유범재;홍예선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.404-414
    • /
    • 2000
  • This paper addresses the development of a 3-fingered humanoid robot hand system and a real-time grasp synthesis of multifingered robot hands to find grasp configurations which satisfy the force closure condition of arbitrary shaped objects. We propose a fast and efficient grasp synthesis algorithm for planar polygonal objects, which yields the contact locations on a given polygonal object to obtain a force closure grasp by the multifingered robot hand. For an optimum grasp and real-time computation, we develop the preference and the hibernation process and assign physical constraints of the humanoid hand to the motion of each finger. The preferences consist of each sublayer reflecting the primitive preference similar to the conditional behaviors of humans for given objectives and their arrangements are adjusted by the heuristics inspired from human's grasping behaviors. The proposed method reduces the computational time significantly at the sacrifice of global optimality, and enables the grasp posture to be changable within two-finger and three-finger grasps. The performance of the presented algorithm is evaluated via simulation studies to obtain the force-closure grasps of polygonal objects with fingertip grasps. The architecture suggested is verified through experimental implementation to our robot hand system by solving the 2- or 3-finger grasp synthesis.

  • PDF

Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model (HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발)

  • Cho, Hyeon-Soo;Park, Min-Gyu;Lee, Hyun-Jeong;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.

Case Study on Robot Education for Children in Lower-Income Group (저소득층 아동을 위한 로봇교육 사례연구)

  • Lee, Sun-Woo;Park, Ill-Woo;Han, Jeong-Hye;Jo, Mi-Heon;Kim, Jin-Oh
    • 한국정보교육학회:학술대회논문집
    • /
    • 2010.08a
    • /
    • pp.9-13
    • /
    • 2010
  • Supported by the Ministry of Knowledge Economy, this research explored the potentiality of the use of hands-on robots in elementary school curriculum. On the basis of the analysis of prior research, we defined the meaning and the characteristics of hands-on robots. The priority was given to the development of lesson plans in attempting to activate the use of robots in elementary school curriculum. Also considering the difficulties faced in schools and the characteristics of robot-based instruction, we classified hands-on robots according to the shape and the goal of use.

  • PDF

Generation of 3-dimensional isocomfort workspace using the robot kinematics (로보트 기구학을 이용한 3차원 등편의 작업영역의 생성)

  • 기도형
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.11-21
    • /
    • 1997
  • The purpose of this study is to obtain 3-dimensional isocomfort workspace using the robot kinematics, which is based on perceived discomfort in varying postures for manipulating four types of controls. Fifteen healthy male subjects participated in the experiment where their perceived discomfort in the given postures was measured, in which L32 orthogonal array was adopted. The shoulder flexion and adduction-abduction, elbow flexion, types of controls, and right/left hands were selected as experimental variables. The results showed that the shoulder flexion and adduction-abduction, elbow flexion, and types of controls significantly affected the perceived discomfort at .alpha. =0.01. Depending upon the types of control used, regression equations predicting perceived dis- comfort and three dimensional isocomfort workspace were suggested based on the experiemntal cata. Using the equations, driver's isocomfort workspace in his/her cabin for pushing operation was illustrated, in which the robot kinematics was employed to describe the translational relationships between the upper arm and the lower arm/hand. It was ecpected that isocomfort workspace could be used as a valuable guideline to design workplaces ergonomically.

  • PDF

Contact Frce Cotrol of Root Hnd using VSS

  • Sim, Kwee-Bo;Hashimoto, Hideki;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1080-1084
    • /
    • 1989
  • The motion of an workpiece to be manipulated is determined by the forces applied to the workpiece. During the contact between the robot hand and the workpiece, impulsive forces may dominate all other forces, and determine the ultimate success or failure of a task. Therefore, one of the important problems in the robot hands is the control of the initial impact force. In this paper, the problem of the force control of robot hand under system with contact force is presented. The principle of energy can be applied in the modelling of the impact force. In order to achieve stable contact and avoid bounces and vibrations, VSS is adopted in the design of the contact force controller. Some simulations are carried out for a pushing operation to control the contact force.

  • PDF

Human-like Arm Movement Planning for Humanoid Robots Using Motion Capture Database (모션캡쳐 데이터베이스를 이용한 인간형 로봇의 인간다운 팔 움직임 계획)

  • Kim, Seung-Su;Kim, Chang-Hwan;Park, Jong-Hyeon;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.188-196
    • /
    • 2006
  • During the communication and interaction with a human using motions or gestures, a humanoid robot needs not only to look like a human but also to behave like a human to make sure the meanings of the motions or gestures. Among various human-like behaviors, arm motions of the humanoid robot are essential for the communication with people through motions. In this work, a mathematical representation for characterizing human arm motions is first proposed. The human arm motions are characterized by the elbow elevation angle which is determined using the position and orientation of human hands. That representation is mathematically obtained using an approximation tool, Response Surface Method (RSM). Then a method to generate human-like arm motions in real time using the proposed representation is presented. The proposed method was evaluated to generate human-like arm motions when the humanoid robot was asked to move its arms from a point to another point including the rotation of its hand. The example motion was performed using the KIST humanoid robot, MAHRU.

  • PDF

3-Finger Robotic Hand and Hand Posture Mapping Algorithm for Avatar Robot (아바타 로봇을 위한 3지 로봇 손과 손 자세 맵핑 알고리즘)

  • Kim, Seungyeon;Sung, Eunho;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.322-333
    • /
    • 2022
  • The Avatar robot, which is one of the teleoperation robots, aims to enable users to feel the robot as a part of the body to intuitively and naturally perform various tasks. Considering the purpose of the avatar robot, an end-effector identical to a human hand is advantageous, but a robotic hand with human hand level performance has not yet been developed. In this paper we propose a new 3-finger robotic hand with human-avatar hand posture mapping algorithm which were integrated with TOCABI-AVATAR, one of the teleoperation system. Due to the flexible rolling contact joints and tendon driven mechanism applied to the finger, the finger could implement adaptive grasping and absorb the impact force caused by unexpected contacts. In addition, human-avatar hand mapping algorithm using five calibration hand postures propose to compensate physical differences between operators. Using the TOCABI-AVATAR system with the robotic hands and mapping algorithm, the operator can perform 13 out of 16 hand postures of grasping taxonomy and 4 gestures. In addition, using the system, we participated in the ANA AVATAR XPRIZE Semi-final and successfully performed three scenarios which including various social interactions as well as object manipulation.