• Title/Summary/Keyword: Robot gripper

Search Result 92, Processing Time 0.042 seconds

Development of All-in-one Attachment Based Steel Pipe Pile Cutting Robot Prototype (강관말뚝 두부정리 및 절단 부위 핸들링 로봇의 프로토타입 개발)

  • Yeom, Dong Jun;Han, Jae Hyun;Jung, Eui Hyun;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.115-123
    • /
    • 2018
  • The primary objective of this study is to develop an all-in-one based steel pipe pile cutting robot prototype that improves the conventional steel pipe pile head cutting work in safety, quality, and productivity. For this, the following research works are conducted sequentially; 1)literature review and expert survey, 2)selection of core technology using AHP analysis, 3)deduction of detail design, 4)verification of structural stability, 5)development of full-scale prototype. As a result leveling laser and laser detector(94.46), plasma cutter(96.72), rotary grapple(98.45) are selected as a core technologies. As an outcome, it is analyzed that gripper, cylinder pivot bracket and gripper base are structurally stable. Their maximum stresses are shown as 43.0%, 19.4%, 5.3% compared to their yield strength respectively. The development of full-scale prototype in this study will be utilized for the development of the all-in-one attachment based steel pipe pile cutting robot commercialization model.

Segmentation-Based Depth Map Adjustment for Improved Grasping Pose Detection (물체 파지점 검출 향상을 위한 분할 기반 깊이 지도 조정)

  • Hyunsoo Shin;Muhammad Raheel Afzal;Sungon Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Robotic grasping in unstructured environments poses a significant challenge, demanding precise estimation of gripping positions for diverse and unknown objects. Generative Grasping Convolution Neural Network (GG-CNN) can estimate the position and direction that can be gripped by a robot gripper for an unknown object based on a three-dimensional depth map. Since GG-CNN uses only a depth map as an input, the precision of the depth map is the most critical factor affecting the result. To address the challenge of depth map precision, we integrate the Segment Anything Model renowned for its robust zero-shot performance across various segmentation tasks. We adjust the components corresponding to the segmented areas in the depth map aligned through external calibration. The proposed method was validated on the Cornell dataset and SurgicalKit dataset. Quantitative analysis compared to existing methods showed a 49.8% improvement with the dataset including surgical instruments. The results highlight the practical importance of our approach, especially in scenarios involving thin and metallic objects.

The Design of an Intelligent Assembly Robot System for Lens Modules of Phone Camera.

  • Song, Jun-Yeob;Lee, Chang-Woo;Kim, Yeong-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.649-652
    • /
    • 2005
  • The camera cellular phone has a large portion of cellular phone market in recent year. The variety of a customer demand makes a fast model change and the spatial resolution is changed from VGA to multi-mega pixel. The 1.3 mega pixel (MP) camera cellular phone was first released into the Korean market in October 2003. The major cellular phone companies released a 2MP camera cellular phone that supports zoom function and a 2MP camera cellular phone is settled down with the Korea cellular phone market. It makes a keen competition in price and demands automation for phone camera module. There is an increasing requirement for the automatic assembly to correspond to a fast model change. The hard automation techniques that rely on dedicated manufacturing system are too inflexible to meet this requirement. Therefore in this study, this system is designed with the flexibility concept in order to cope with phone camera module change. The system has a same platform that has X-Y-Z motion or X-Z motion with ${\mu}m$order accuracy. It has a special gripper according to the type of a component to be put together. If the camera model changes, the gripper may be updated to fit for the camera module. The controller of this system acquires the data sets that have the information about the assembly part by the tray. This information is obtained ahead of an inspection step. The controller excludes an inferior part to be assembled by using this information to diminish the inferior goods. The assembly jig used in this system has a function of self adjustment that reduces the tact time and also diminish the inferior goods. Finally, the intelligent assembly system for phone camera module will be designed to get a flexibility to meet model change and a high productivity with a high reliability.

  • PDF

Manipulator with Camera for Mobile Robots (모바일 로봇을 위한 카메라 탑재 매니퓰레이터)

  • Lee Jun-Woo;Choe, Kyoung-Geun;Cho, Hun-Hee;Jeong, Seong-Kyun;Bong, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.507-514
    • /
    • 2022
  • Mobile manipulators are getting lime light in the field of home automation due to their mobility and manipulation capabilities. In this paper, we developed a small size manipulator system that can be mounted on a mobile robot as a preliminary study to develop a mobile manipulator. The developed manipulator has four degree-of-freedom. At the end-effector of manipulator, there are a camera and a gripper to recognize and manipulate the object. One of four degree-of-freedom is linear motion in vertical direction for better interaction with human hands which are located higher than the mobile manipulator. The developed manipulator was designed to dispose the four actuators close to the base of the manipulator to reduce rotational inertia of the manipulator, which improves stability of manipulation and reduces the risk of rollover. The developed manipulator repeatedly performed a pick and place task and successfully manipulate the object within the workspace of manipulator.

Development of an Automatic Grafting Robot for Fruit Vegetables using Image Recognition (영상인식 기술 이용 과채류 접목로봇 개발)

  • Kang, Dong Hyeon;Lee, Si Young;Kim, Jong Koo;Park, Min Jung;Son, Jin Kwan;Yun, Sung-Wook
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.322-327
    • /
    • 2019
  • This study was conducted to improve the performance of automatic grafting robot using image recognition technique. The stem diameters of tomatoes and cucumber at the time of grafting were $2.5{\pm}0.3mm$ and $2.2{\pm}0.2mm$ for scions and $3.1{\pm}0.7mm$ and $3.6{\pm}0.3mm$ for rootstocks, respectively. The grafting failure was occurred when the different height between scions and rootstocks were over 4 mm and below 2 mm due to the small contact area of both cutting surface. Therefore, it was found that the height difference at the cutting surface of 3 mm is appropriate. This study also found that grafting failure was occurred when the stem diameters of both scions and rootstocks were thin. Therefore, it was suggested to use at least one stem with thicker than the average stem diameter. Field survey on the cutting angle of stems by hand were ranged from 13 to 55 degree for scions and 15 to 67 degree for rootstocks, respectively, which indicates that this could cause the grafting failure problem. However, the automatic grafting robot developed in this study rotates the seedlings 90 degree and then the stems are cut using a cutting blade. The control part of robot use all images taken from grafting process to determine the distance between a center of both ends of stem and a gripper center and then control the rotation angle of a gripper. Overall, this study found that The performance of automatic grafting robot using image recognition technique was superior with the grafting success rates of cucumber and tomato as $96{\pm}3.2%$ and $95{\pm}4%$, respectively.

Monovision Charging Terminal Docking Method for Unmanned Automatic Charging of Autonomous Mobile Robots (자율이동로봇의 무인 자동 충전을 위한 모노비전 방식의 충전단자 도킹 방법)

  • Keunho Park;Juhwan Choi;Seonhyeong Kim;Dongkil Kang;Haeseong Jo;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.95-103
    • /
    • 2024
  • The diversity of smart EV(electric vehicle)-related industries is increasing due to the growth of battery-based eco-friendly electric vehicle component material technology, and labor-intensive industries such as logistics, manufacturing, food, agriculture, and service have invested in and studied automation for a long time. Accordingly, various types of robots such as autonomous mobile robots and collaborative robots are being utilized for each process to improve industrial engineering such as optimization, productivity management, and work management. The technology that should accompany this unmanned automobile industry is unmanned automatic charging technology, and if autonomous mobile robots are manually charged, the utility of autonomous mobile robots will not be maximized. In this paper, we conducted a study on the technology of unmanned charging of autonomous mobile robots using charging terminal docking and undocking technology using an unmanned charging system composed of hardware such as a monocular camera, multi-joint robot, gripper, and server. In an experiment to evaluate the performance of the system, the average charging terminal recognition rate was 98%, and the average charging terminal recognition speed was 0.0099 seconds. In addition, an experiment was conducted to evaluate the docking and undocking success rate of the charging terminal, and the experimental results showed an average success rate of 99%.

Improvement in the Control Performance of Instruments used for Minimally Invasive Surgery (최소침습술을 위한 의료용 인스트루먼트의 동작 성능 향상)

  • Park, Hyeonjun;Won, Jongseok;Park, Jaeheung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1160-1166
    • /
    • 2013
  • This paper presents feedforward controllers to improve the control performance of the motion and grasping force of a surgical instrument used in an MIS (Minimally Invasive Surgery) robot. The surgical instrument has a long distance between the drive motors and its active joints. Therefore, the gripper on the instrument is controlled by a cable drive mechanism, which generates a coupled motion between the wrist joint and the grip direction. In order to solve the problem, this paper analyzes the pulley composition of the surgical instrument and proposes feedforward controllers to eliminate the coupled motion. Furthermore, feedforward controllers to regulate the grasping force are proposed to deal with another coupling problem between the grasping force of the instrument and the motion of the instrument joints. The experimental results demonstrate the improved control performance of the motion and grasping force of the instrument.

Sensory Motor Coordination System for Robotic Grasping (로봇 손의 힘 조절을 위한 생물학적 감각-운동 협응)

  • 김태형;김태선;수동성;이종호
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, human motor behaving model based sensory motor coordination(SMC) algorithm is implemented on robotic grasping task. Compare to conventional SMC models which connect sensor to motor directly, the proposed method used biologically inspired human behaving system in conjunction with SMC algorithm for fast grasping force control of robot arm. To characterize various grasping objects, pressure sensors on hand gripper were used. Measured sensory data are simultaneously transferred to perceptual mechanism(PM) and long term memory(LTM), and then the sensory information is forwarded to the fastest channel among several information-processing flows in human motor system. In this model, two motor learning routes are proposed. One of the route uses PM and the other uses short term memory(STM) and LTM structure. Through motor learning procedure, successful information is transferred from STM to LTM. Also, LTM data are used for next moor plan as reference information. STM is designed to single layered perception neural network to generate fast motor plan and receive required data which comes from LTM. Experimental results showed that proposed method can control of the grasping force adaptable to various shapes and types of greasing objects, and also it showed quicker grasping-behavior lumining time compare to simple feedback system.

Contact Resistance between Flexible Tactile Sensor Fabricated by Direct Write and Copper Alloy Terminals (Direct write 기술로 제작된 유연촉각센서와 동합금 단자의 접촉저항)

  • Kim, Jindong;Bae, Yonghwan;Yun, Haeyong;Lee, Inhwan;Kim, Hochan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.111-116
    • /
    • 2020
  • Flexible tactile sensors, which are primarily used as grippers in robots, are mainly used to handle highly elastic or highly flexible objects. That is, flexible grippers are used when an object cannot be sufficiently controlled by applying a specific output force or taking a specific grabbing action. This is because a flexible tactile sensor needs to measure the pressure applied directly to held objects while deforming according to the shape of the object to be handled. CNT-based sensors used to be made from a highly flexible polymer to give flexibility and it is known that the sensors are greatly affected by the contact resistance of the terminal that connects the sensor to an electrical circuit; therefore, this paper clarifies the contact resistance of MWCNTs-based flexible tactile sensors and terminals. The effects of main and plating materials for terminals are investigated and the combinations of main and plating materials that exhibit contact resistance are measured in a typical industrial environment.

Development of Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇 개발)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • Oriental melon (Cucumis melo var. makuwa) should be cultivated on the soil and be harvested. It is difficult to find because it is covered with leaves, and furthermore, it is very hard to grip it due to its climbing stems. This study developed and tested oriental melon harvesting robots such as an end-effector, manipulator and identification device. The end effector is divided into a gripper for harvest and a cutter for stems. In addition, it was designed to control the gripping and cutting forces so that the gripper could move four fingers at the same time and the cutter could move back and forth. The manipulator was designed to realize a 4-axis manipulator structure to combine orthogonal coordinate-type and shuttle-type manipulators with L-R type model to rotate based on the central axis. With regard to the identification device, oriental melon was identified using the primary identification global view camera device and secondary identification local view camera device and selected in the prediction of the sugar content or maturity. As a result of the performance test using this device, the average harvest time was 18.2 sec/ea, average pick-up rate was 91.4%, average damage rate was 8.2% and average sorting rate was 72.6%.