• 제목/요약/키워드: Robot gripper

검색결과 92건 처리시간 0.018초

시설재배 참외 수확 로봇용 엔드이펙터의 설계 요인 분석 (Design Factor Analysis of End-Effector for Oriental Melon Harvesting Robot in Greenhouse Cultivation)

  • 하유신;김태욱
    • 생물환경조절학회지
    • /
    • 제22권3호
    • /
    • pp.284-290
    • /
    • 2013
  • 본 연구는 시설재배에서 참외를 수확할 수 있는 로봇의 엔드이펙터를 개발하기 위한 전단계로서, 참외의 엔드이펙트 중에서 소프트 핸드링이 가능한 그립퍼와 참외줄기를 절단하는 커터를 설계하기 위해 참외의 기하학, 압축, 절단, 마찰 특성 등을 분석하였다. 그 결과 참외의 길이는 평균 108mm, 직경은 중간지점에서 평균 70mm, 중량은 평균 188g, 부피는 평균 333mL, 진원도는 평균 3.8mm로 나타났다. 참외의 중량(W)에 대하여 길이(L)와 직경(D2)을 변수로 하는 식 $W=L^a{\times}D_2^b$로부터 비선형 회귀분석을 실시한 결과 a는 2.0279, b는 -0.9998의 상수값을 가지는 상관관계가 있는 것으로 나타났다. 참외줄기의 지름은 평균 3.8mm이며, 참외 줄기는 중심으로부터 반경 5mm 범위 내에서 대부분 분포하였다. 참외의 항복치와 압축강도, 경도의 평균값은 각각 $36.5N/cm^2$, $185.7N/cm^2$, $636.7N/cm^2$이며, 참외 줄기의 절단력과 절단강도는 각각 $2.87{\times}10^{-2}N$$5.60N/cm^2$로 나타났다. 참외의 마찰계수는 고무가 0.609으로 가장 높게 나타났고, 그 다음으로 알루미늄이 0.393, 스테인레스강이 0.177, 테프론이 0.079로 나타났다. 분석된 자료를 토대로 엔드이펙터 설계시 동작에 따른 위치 오차와 안전율을 감안하여, 그립퍼의 및 커터의 크기, 선회반경, 설치위치, 구동모터의 동력, 재료 및 재질의 선정 등에 적용할 수 있을 것으로 판단되었다.

딥러닝 기반 김부각 건조 반제품 표면 검출 모델 개발 (Development of surface detection model for dried semi-finished product of Kimbukak using deep learning)

  • 김태형;권기현;김아나
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.205-212
    • /
    • 2024
  • 본 연구는 건조부각을 유탕기에 투입하기 전 로봇에 장착된 진공 그리퍼를 활용하여 건조 반제품(건조부각)을 이송하기 위한 선별 작업에서 그리핑 성공률을 향상시기키 위한 수단으로 건조부각의 앞면(고명이 있는)과 뒷면(고명이 없는) 표면을 판별하는 딥러닝 모델을 제안한다. 획득한 건조부각 440개의 RGB 영상을 기반으로 데이터 증강 기법을 적용한 후 건조부각 영역 및 표면 정보 라벨링을 진행하였다. 데이터 전처리 과정을 거친 건조부각 데이터를 기반으로 영역 검출을 위해 딥러닝 모델은 YOLO-v5을 적용하였다. 그 결과 건조부각 앞면 영역 검출의 mAP와 mIoU 값은 각각 0.98와 0.96으로 나타났으며, 뒷면의 경우 각각 1.00과 0.95로 나타났다. 앞면과 뒷면 2개의 클래스에 대하여 이진분류한 결과는 average 98.5%, recall 98.3%, precision 98.6%, F1-score 98.4%로 나타났다. 본 연구 결과를 통하여 RGB 영상을 활용한 건조부각의 표면 정보에 대한 분류가 가능하며, 추후 유탕 전 건조부각 표면 선별공정의 로봇-자동화 시스템 개발에 활용될 가능성을 확인하였다.