• 제목/요약/키워드: Robot docking

Search Result 40, Processing Time 0.019 seconds

Flexible Docking Mechanism with Error-Compensation Capability for Auto Recharging System of Mobile Robot

  • Roh, Se-Gon;Park, Jae-Hoon;Lee, Young-Hoon;Song, Young-Kouk;Yang, Kwang-Woong;Choi, Moo-Sung;Kim, Hong-Seok;Lee, Ho-Gil;Choi, Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.731-739
    • /
    • 2008
  • The docking and recharging system for a mobile robot must guarantee the ability to perform its tasks continuously without human intervention. This paper proposes two docking mechanisms with localization error-compensation capability for an auto recharging system. The mechanisms use friction forces or magnetic forces between the docking parts of the robot and those of the docking station. It is a structure to improve the allowance ranges of lateral and directional docking offsets, in which the robot is able to dock into the docking station. In this paper, auto-recharging system and the features of the proposed mechanisms are verified with experimental results using simple homing method.

Study on the Transformable Quadruped Robot with Docking Module (변형과 결합 가능한 4족 로봇에 대한 연구)

  • Kim, Young-Min;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.236-241
    • /
    • 2015
  • This paper presents a study on transformable multiple quadruped robots by docking between robots and waist joints. This robot is able to go on a variety of angles because of mecanum wheels. It is also a hybrid design which allows robot use legs to overcome obstacles on complex terrains and wheels to move on flat ground. The robot is applied kinematics of mecanum wheels and walking, and its walking is based on specific patterns. Docking module is located in front and backside of robot, docking algorithm is suggested and fulfilled for docking between 2 robots. A waist joint is at the center of robot body for transformation and after docking and transformation, robot can activate new functions that carry something.

A Study on Task Planning and Design of Modular Quadruped Robot with Docking Capability (결합 가능한 모듈형 4족 로봇의 설계 및 작업 계획에 대한 연구)

  • Sun, Eun-Hey;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • There are many researches to develop robots that improve its mobility and task planning to adapt in various uneven environments. In this paper, we propose the design method and task planning of quadruped robot which can have top-bottom docking structure. The proposed quadruped robot is designed to adjust leg length using linear actuators and perform top-bottom docking and undocking using octagonal cone shaped docking module. Also, to stable walking and information gathering in the various environments, a geomagnetic sensor, PSD sensor, LRF sensor and camera. We propose an obstacle avoidance method and the topbottom docking algorithm of the two quadruped robots using linear actuator. The robot can overcome obstacles using adjusting leg length and activate the top-bottom docking function. The top-bottom docking robots of two quadruped robot can walk 4 legged walking and 6 legged walking, and use 4 arms or 2 arms the upper. We verified that the docking robots can carry objects using 4 leg of the upper robot.

A Study on Hybrid Wheeled and Legged Mobile Robot with Docking Mechanism (결합 가능한 복합 바퀴-다리 이동형 로봇에 관한 연구)

  • Lee, Bo-Hoon;Lee, Chang-Seok;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.692-697
    • /
    • 2011
  • There are many researches to develop robots that improve its mobility to adapt in various uneven environments. In the paper, a hybrid mobile robot that can dock with the other robot and transforms between wheeled robot and legged robot is proposed. The hybrid mobile robot platform has docking device with a peg and a cup module. In addition, the robot is possible to walk and drive according to condition of the road. A navigation algorithm of the hybrid mobile robot is proposed to improve the mobility of robots using docking algorithm based on image processing on the broken road and uneven terrain. The proposed method recognizes road condition through PSD sensor attached in front and bottom of the robot and selects an appropriate navigation method according to terrain surface. The proposed docking and navigation methods are verified through experiments using hybrid mobile robots.

Design of a Cube-Style Modular Robot (큐빅 형태의 모듈라 로봇 디자인)

  • Oh, Jun-Young;Kim, Dea-Sun;Park, No-Su;Lee, Bo-Hee;Seo, Nam-Gil;Lee, Chang
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.345-346
    • /
    • 2007
  • This paper deals with design of a cube-style modular robot. The modular robot can change its own form according to the working environment. Therefore it is suitable to work in the search and rescue area with the shape of snake, legged robot and humanoid robot. Each of modular unit has to install its own controller on the body and driving mechanism in order to give it mobility autonomously. And also they should attach and detach each other with docking mechanism and algorithm. Using this mechanism, they can make union, separation, recombination. The other important point is that some information of each cell should be exchanged to reconfigure their shape and to make some docking of the modular cell. In this paper we suggested a design concept of our modular robot focused on the docking mechanism of the robot.

  • PDF

Flexible Docking Mechanism with Error-Compensation Capability for Auto Recharging System (자동충전 시스템을 위한 오차보정이 가능한 유연한 도킹 메커니즘)

  • Roh, Se-Gon;Park, Jae-Hoon;Song, Young-Kook;Yang, Kwang-Woong;Choi, Moo-Sung;Kim, Hong-Seok;Lee, Ho-Gil;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.289-296
    • /
    • 2007
  • The docking and recharging system for a mobile robot must guarantee the ability of the mobile robot to perform its tasks continuously without human intervention. In this paper, two docking mechanisms are proposed with localization error-compensation capability for the auto recharging system. Friction forces or magnetic forces are used between the docking parts of the docking module and those of the docking station. In addition, an auto recharging system is developed to control the power. Since the system is modularized, it can easily be adapted to other robots.

  • PDF

Mechanism Development and Position Control of Smart Buoy Robot

  • Park, Hwi-Geun;Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • There is a gradual increase in the need for energy charging in marine environments because of energy limitations experienced by electric ships and marine robots. Buoys are considered potential energy charging systems, but there are several challenges, which include the need to maintain a fixed position and avoid hazards, dock with ships and robots in order to charge them, be robust to actions by birds, ships, and robots. To solve these problems, this study proposes a smart buoy robot that has multiple thrusters, multiple docking and charging parts, a bird spike, a radar reflector, a light, a camera, and an anchor, and its mechanism is developed. To verify the performance of the smart buoy robot, the position control under disturbance due to wave currents and functional tests such as docking, charging, lighting, and anchoring are performed. Experimental results show that the smart buoy robot can operate under disturbances and is functionally effective. Therefore, the smart buoy robot is suitable as an energy charging system and has potential in realistic applications.

Development of High Precision Docking Sensor for Mobile Robot (이동로봇을 위한 고정밀 도킹센서 개발)

  • Yoon, Nam-Il;Choi, Jong-Kap;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.348-354
    • /
    • 2011
  • Mobile robots performed various missions in various environments. In order to move to target precisely, the mobile robots need a precise position sensing system In this paper, a new high precision docking sensor is proposed. Proposed docking sensor consists of linear CCD(charge coupled device) sensor and ultrasonic sensors. The docking sensor system can measure lateral position(X), longitudinal position(Y) and angle(${\theta}$) between the sensor and flat target with simple mark. Two ultrasonic sensors measure two distances which can be converted to longitudinal position and angle. Linear CCD sensor measures lateral position using center mark of the target. To verify performance of the sensor, the sensor is applied to an omnidirectional mobile robot. Several experimental results show highly precise performance of the sensor. Repeatability of the docking sensor is less than 1mm and $0.2^{\circ}$. Proposed docking sensor can be applied for precise docking of mobile robot.

A Navigation Algorithm of Modular Robots with 3 DOF Docking Arm in Uneven Environments (3자유도 결합 팔을 가진 모듈형 로봇의 비평탄 지형 주행 알고리즘)

  • Na, Doo-Young;Min, Hyun-Hong;Lee, Chang-Seok;Noh, Su-Hee;Moon, Hyung-Pil;Jung, Jin-Woo;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.311-317
    • /
    • 2010
  • In the paper, we propose an improved mobility method of modular robots by physical docking in the uneven environments. The modular robot system consists of autonomous docking device, 3 DOF robotic arm, motion controller, and main controller. Real-time location and direction of the robot are estimated using inner GPS and they are used to control direction and path of each robot for physical docking between modular robots. We design a navigation algorithm of modular robot using physical docking and cooperative navigation in the environment with broken road and low stair. The proposed method is verified by navigation experiments of three developed modular robots in the uneven environments.

Fuzzy Navigation and Obstacle Avoidance Control for Docking of Modular Robots (모듈형 로봇의 자가 결합을 위한 퍼지 주행 제어 및 장애물 회피 제어)

  • Na, Doo-Young;Noh, Su-Hee;Moon, Hyung-Pil;Jung, Jin-Woo;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.470-477
    • /
    • 2009
  • Modular reconfigurable robots with physical docking capability easily adapt to a new environment and many studies are necessary for the modular robots. In this paper, we propose a vision-based fuzzy autonomous docking controller for the modular docking robots. A modular docking robot platform which performs real-time image processing is designed and color-based object recognition method is implemented on the embedded system. The docking robot can navigate to a subgoal near a target robot while avoiding obstacles. Both a fuzzy obstacle avoidance controller and a fuzzy navigation controller for subgoal tracking are designed. We propose an autonomous docking controller using the fuzzy obstacle avoidance and navigation controllers, absolute distance information and direction informations of robots from PSD sensors and a compass sensor. We verify the proposed docking control method by docking experiments of the developed modular robots in the various environments with different distances and directions between robots.