• 제목/요약/키워드: Robot and automation

검색결과 609건 처리시간 0.028초

산업용 양팔로봇의 설계 및 제어 (Design and Control of Industrial Dual Arm Robot)

  • 박찬훈;박경택
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.58-65
    • /
    • 2008
  • The study on dual arm robot manipulator which consists of two 6-DOF srms and one 2-DOF torso is introduced. This dual arm robot manipulator is designed for automation of assembly process in automotive manufacturing line. Each industrial 6-DOF arm can be used as a stand-alone type of industrial robot manipulator with 6-DOF and as a manipulator part of dual arm robot at the same lime. These structures help the robot maker willing to succeed in emerging market of dual arm robots have the high competitive power for the current industrial robot market and the emerging market of dual arm robot at the same time. The research results of the design concept, workspace analysis and the PC-based controller will be introduced.

먹매김 시공 자동화 로봇 개선 우선순위 도출 연구 (A study on improvement priority of an automated layout robot)

  • 박규선;김태훈;임현수;조규만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.233-234
    • /
    • 2023
  • Construction robot-based automation can contribute to productivity and quality improvement by replacing manpower in tasks that have simple repetitive properties or require high precision. In this respect, layout work is one of the most effective tasks in introducing robot-based automation technology. The development of a robotic layout system for building structures has recently been promoted in Korea, and a prototype of a marking robot has been produced. However, for commercialization, the technology improvement is required through the analysis of major improvement directions. Therefore, this study aims to derive the improvement priorities of the marking robot based on the evaluation of researchers who participated in the development process. As a result, there was a high demand for improvement in factors such as the robot's precise positioning method and robot size and weight. The results of this study are expected to serve as guidelines for the efficient input of limited resources in the future technology development process.

  • PDF

곤돌라형 외벽 유지관리 로봇의 이동/작업 메커니즘 및 플랫폼 개발 (Development of Gondola-type Building Management Robot Platform and Mechanism for Moving/Tasking on Building Outer-wall)

  • 함영복;박성재
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.375-382
    • /
    • 2013
  • Down through the years, human needs and desires have required a robot system to work at hazardous environments instead. Current painting task is costly and laborious, and it exposes workers to significant health and safety risks. Automation system offers potential improvement in this area and is especially well suited to the outer-wall painting tasks in concrete structures. This paper introduces the result of gondola-type building management robot(G-BMR) platform and mechanism for moving/tasking on building outer-wall for the outer-wall painting. Its technical and economic feasibility are conducted, and it is concluded that developing G-BMR is physically and economically feasible in this research. And we discuss about the future of G-BMR and automation in construction field.

점용접 및 아크용접 겸용 로봇 자동화시스템 개발 (Development of Spot Welding and Arc Welding Dual Purpose Robot Automation System)

  • 이용중;김태원;이형우
    • 한국기계가공학회지
    • /
    • 제3권4호
    • /
    • pp.73-80
    • /
    • 2004
  • A dual purpose robot automation system is developed for both arc welding and spot welding by one robot within a cell. The need for automation of both arc welding and spot welding processes is urgent while the production volume is not so big as to accommodate separate station for the two processes. Also, space is too narrow for separate station to be settled down in the factory. A spot welding robot is chosen and the function for arc welding are implemented in-house at cost of advanced functions. For the spot welding, a single pole type gun is used and the robot has to push down the plate to be welded, which causes the robot positioning error. Therefore, position error compensation algorithm is developed. The basic functions for the arc welding processes are implemented using the digital I/O board of robot controller, PLC, and A/D conversion PCB. The weaving pattern is taught in meticulously by manual teach. A fixture unit is also developed for dual purpose. The main aspects of the system is presented in this paper especially in the design and implementation procedure. The signal diagrams and sequence logic diagrams are also included. The outcome of the dual purpose welding cell is the increased productivity and good production stability which is indispensable for production volume prediction. Also, it leads to reduction of manufacturing lead time.

  • PDF

이족보행로봇의 보행을 위한 에너지 최적화 (Energy Optimization for The Walking of Biped Robot)

  • 김종태;최상호;임선호;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2339-2341
    • /
    • 1998
  • This paper is concerned with an energy optimization for the walking of IWR biped robot. The movement of balancing joints are determined by ZMP(Zero Moment Point) and dynamic properties caused by motion of a swing leg. Therefore, ZMP positions have an important role in walking and guarnateeing the stability of a robot. A genetic algorithm is utilized for solving this problem and finding ZMP with a minimum energy at each sampling time during the walk. In this study, we performed an energy optimization with desired ZMP trajectories and motion of balancing joints.

  • PDF

로봇에 의한 디버링 작업의 자동화(I) (Robot Deburring Automation -Systems Using Solid Rotating Burr-)

  • 유범상;오영섭
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.30-47
    • /
    • 1997
  • This paper encompasses a general technology in robot deburring automation using solid rotaing burr tools. Deburring is a cumbersome area in finishing technology, where design concept and system implementation is based on knowhows and experiences rather then theoretical development. In the field engineering it is diffcult to find a clue to where and how to start the system design. This paper presents a guide inselection of tool concept of geometry and material. Also, the concept of tool compliance system is introduced, which is one of the most important factor in robot deburring. Typical problems encountered in the field are classified into 20 categories and the solutions are suggested by the proven technology from the expertise. Special problems in polymer and diecasting areas are also briefly mentioned.

  • PDF

Development of a Dual-arm Collaborative Robot System for Chemical Drum Assembly

  • Gi-Seong Kim;Sung-Hun Jeong;Shi-Baek Park;Han-Sung Kim
    • 한국산업융합학회 논문집
    • /
    • 제26권4_1호
    • /
    • pp.545-551
    • /
    • 2023
  • In this paper, a robot automation methodology for chemical drum assembly in semiconductor industries are presented. Robot automation is essential to resolve safety issues in which operators are directly or indirectly exposed to chemicals or fumes in assembling dispense heads on chemical drums. However, the chemical drum assembling process involves complex and difficult tasks, such as mating male/female keycodes and fastening screws with large-diameter, which may be very difficult to be performed by a single-arm robot with a commercial rigid F/T sensor. In order to solve the problems, a method for assembling a chemical drum using dual-arm collaborative robot system, compliance F/T sensor, robot vision and gripper is presented.

An algorithm of marking line correction for robot-based layout automation of building structures

  • Lim, Hyunsu;Kim, Taehoon;Cho, Kyuman;Kim, Taehoon;Kim, Chang-Won
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.312-318
    • /
    • 2022
  • Robot-based layout automation has been recently promoted for the purpose of improving productivity and quality. Marking robots have various functional demands to secure marking precision and environmental adaptability. In particular, in order to automate marking work of building structure, correction of the marking line through position recognition of rebars placed is required. Because the rebars must maintain a constant cover thickness from the formwork surface, if the rebars are out of planned position, the rebar or marking line need to be corrected to secure the cover thickness. Thus, the marking robot for structural work needs to have the function for determining the position correction of the rebar or the marking line. In order to judge the correction of marking line, it is required to measure the distance between the planned marking line and the rebar placed. Therefore, this study proposes an algorithm that can measure the distance between the planned line and the rebar, and correct marking line for the automatic operation of the marking robot. The results of this study will be utilized as a core function for unmanned operation of the marking robot and contribute to securing precise marking by reflecting construction errors.

  • PDF

수치제어 데이터와 오프라인 프로그램을 이용한 연마 로봇 시스템 개발 (The Development of Grinding Robot System Using NC data and Off-line Programming)

  • 오영섭;유범상
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.9-17
    • /
    • 1999
  • This paper presents a method of grinding and polishing automation of precision die after CNC machining. The method employs a robot system equipped with a pneumatic spindle and a special abrasive film pad. The robot program is automatically generated off-line program form a PC and downloaded to robot controller. Position and orientation data for the program is supplied form cutter contact (CC) data of NC machining process. This eliminates separate robot teaching process. This paper aims at practical automation of die finishing process which is very time consuming and suffering from shortage of workpeople. Time loss due to changeover from one product to another is eliminated by PC off-line programming exploiting appropriate NC machining data. Dextrous 6-axis robot with rigid wrist and simple tooling enables the process applicable to larger, rather complex 3 dimensional free surfaces.

  • PDF

로봇 소프트웨어 컴포넌트를 위한 시뮬레이션 기반 인터페이스 테스팅 자동화 도구 (SITAT: Simulation-based Interface Testing Automation Tool for Robot Software Component)

  • 강정석;최형섭;맹상우;김시완;박홍성
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.608-616
    • /
    • 2010
  • Robot software components can be categorized into two types; the pure S/W component and the H/W-related one. Since interface testing of the robot software component is the labour-intensive and complicated work, an effective automated testing tool is necessary. Especially it is difficult to test all types of H/W-related components because it is hard work to prepare all H/W modules related to them. This paper proposes a new simulation-based interface testing automation tool(SITAT) which generates automatically test cases for interface testing of the robot software component and executes the interface test with the generated test cases where the simulator is used for simulation of the activity of a H/W module instead of the real H/W module. This paper verifies the effectiveness of the suggested SITAT with testing of the real H/W-related robot software component.