• Title/Summary/Keyword: Robot Workspace

Search Result 168, Processing Time 0.029 seconds

Balance Control of a Biped Robot Using the ZMP State Prediction of the Kalman Estimator (칼만예측기의 ZMP 상태추정을 통한 이족로봇의 균형제어기법)

  • Park, Sang-Bum;Han, Young-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.601-607
    • /
    • 2006
  • This paper proposes a novel balance control scheme of a biped robot to predict the next position of ZMP using Kalman Filter. The mathematical model of the biped robot is generally approximated by 3D-LIPM(3D-Linear Inverted Pendulum Mode), but it cannot completely express the robot's dynamics. The stability of the biped robot depends on whether the ZMP(Zero Moment Point) position is in the stability region or out of. And the internal error between the robot mechanism and its model could affect the stability of a robot. Therefore, the proposed balance control not reduces the internal error, but also timely generates the proper control. The experiment of the proposed balance control is simulated on the virtual workspace where the biped robot may encounter with various difficulties.

A kinematic Analysis of Binary Robot Manipulator using Genetic Algorithms

  • Gilha Ryu;Ihnseok Rhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.76-80
    • /
    • 2001
  • A binary parallel robot manipulator uses actuators that have only two stable states being built by stacking variable geometry trusses on top of each other in a long serial chain. Discrete characteristics of the binary manipulator make it impossible to analyze an inverse kinematic problem in conventional ways. We therefore introduce new definitions of workspace and inverse kinematic solution, and the apply a genetic algorithm to the newly defied inverse kinematic problem. Numerical examples show that our genetic algorithm is very efficient to solve the inverse kinematic problem of binary robot manipulators.

  • PDF

Control System of Roadway Sign Painting Robot (노면사인 도색로봇 시스템의 제어 알고리즘)

  • 신현호;이우창;유지훈;홍대희;최우천;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1723-1726
    • /
    • 2003
  • Clean and well maintained roadway signs are important for preserving driver's safety. The existing signs on the roadway must be periodically re-painted in order to maintain clean state. However, current sign painting operations are manually performed now. These are very slow and workers are exposed to very dangerous and hazard working environment. In this paper, we present the method for automating this job with gantry robot and spray system. In addition, we suggest two design concepts to resolve the problem that it is impractical to make the gantry system so big as to cover whole lane width. In order to show the validity of this system, the painting operation is simulated and experimentally executed.

  • PDF

Fast Path Planning Algorithm for Mobile Robot Navigation (모바일 로봇의 네비게이션을 위한 빠른 경로 생성 알고리즘)

  • Park, Jung Kyu;Jeon, Heung Seok;Noh, Sam H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • Mobile robots use an environment map of its workspace to complete the surveillance task. However grid-based maps that are commonly used map format for mobile robot navigation use a large size of memory for accurate representation of environment. In this reason, grid-based maps are not suitable for path planning of mobile robots using embedded board. In this paper, we present the path planning algorithm that produce a secure path rapidly. The proposed approach utilizes a hybrid map that uses less memory than grid map and has same efficiency of a topological map. Experimental results show that the fast path planning uses only 1.5% of the time that a grid map based path planning requires. And the results show a secure path for mobile robot.

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

Path Planning of Mobile Robot using a Potential Field (퍼텐셜 필드를 이용한 이동 로봇의 경로 계획)

  • Jung Kyung-Kwon;Kang Seung-Ho;Chung Sung-Boo;Eom Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.701-705
    • /
    • 2006
  • This paper propose a method of mobile robot path planning for prevention of slip using potential field. The path planning minimizes robot slip for the potential field method to smooth a potential barrier. In order to verify the effectiveness of the proposed method, we performed simulations on path planning with C-obstacles in the workspace. The results show that the proposed method considerably improves on the performance of the general potential field method.

  • PDF

Complete Coverage Path Planning of Cleaning Robot

  • Liu, Jiang;Kim, Kab-Il;Son, Young-I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.429-432
    • /
    • 2003
  • In this paper, a novel neural network approach is proposed for cleaning robot to complete coverage path planning with obstacle avoidance in stationary and dynamic environments. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxley's membrane equation. There are only local lateral connections among neurons. The robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot location without any prior knowledge of the dynamic environment.

  • PDF

Measurement on range of two degrees of freedom motion for analytic generation of workspace (작업영역의 해석적 생성을 위한 2자유도 동작의 동작범위 측정)

  • 기도형
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.15-24
    • /
    • 1996
  • To generate workspace analytically using the robot kinematics, data on range of human joints motion, especially range of two degrees of freedom motion, are needed. However, these data have not been investigated up to now. Therefore, in this research, we are to investigate an interaction effect of motions with two degrees of freedom occurred simultaneously at the shoulder, virtual hip(L5/S1) and hip joints, respectively, for 47 young male students. When motion with two degrees of freedom occurred at a joint such as shoulder, virtual hip and hip joints, it was found from the results of ANOVA that the action of a degree of freedom motion may either decrease or increase the effective functioning of the other degree of freedom motion. In other words, the shoulder flexion was decreased as the shoulder was adducted or abducted to $60^{\circ}C$TEX>or abducted from $60^{\circ}C$TEX>to maximum degree of abduction, while the shoulder flexion increased as the joint was abducted from $60^{\circ}C$TEX> to $60^{\circ}C$TEX> The flexion was decreased as the virtual hip was bent laterally at the virtual hip joint, and also did as the hip was adducted or abducted from the neutral position. It is expected that workspace can be generated more precisely based the data on the range of two degrees of joint motion measured in this study.

  • PDF

Development of the Hybrid Type Robot Using a Pneumatic Actuator For Physical Therapy Of Ankylosis (관절 경직 환자의 물리 치료를 위한 공압 구동형 하이브리드 로봇 개발)

  • 최현석;최철우;한창수;한정수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • In this paper. the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantages of good compliance , high Payload-to-weight and payload-to-volume ratios. high speed and force capabilities. Using pneumatic actuators. which have low stiffness. the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into Positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory. the Pneumatic service robot is evaluated and verified.

A Study on Object Tracking for Autonomous Mobile Robot using Vision Information (비젼 정보를 이용한 이동 자율로봇의 물체 추적에 관한 연구)

  • Kang, Jin-Gu;Lee, Jang-Myung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.235-242
    • /
    • 2008
  • An Autonomous mobile robot is a very useful system to achieve various tasks in dangerous environment, because it has the higher performance than a fixed base manipulator in terms of its operational workspace size as well as efficiency. A method for estimating the position of an object in the Cartesian coordinate system based upon the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and the real object, is proposed. With this position estimation, a method of determining an optimal path for the autonomous mobile robot from the current position to the position of object estimated by the image information using homogeneous matrices. Finally, the corresponding joint parameters to make the desired displacement are calculated to capture the object through the control of a mobile robot. The effectiveness of proposed method is demonstrated by the simulation and real experiments using the autonomous mobile robot.

  • PDF