• Title/Summary/Keyword: Robot Workspace

Search Result 168, Processing Time 0.02 seconds

ANSYS®-Based Gear Stress Analysis of a Lightweight 3-DOF Wrist Mechanism for a Parallel Robot with Expanded Workspace (고속 확장된 작업공간을 가진 병렬 로봇을 위한 경량 3-DOF 손목 메커니즘의 ANSYS 기반 응력해석)

  • Park, Sang Hyeok;Chung, Won Jee;Hwang, Hui Geon;Kim, Hong Rok;Choi, Se Woong;Jee, Myeong Jun;Hong, Woo Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.116-122
    • /
    • 2022
  • This study proposed a method of testing the stability when selecting gears to reduce the weight of a 3-DOF wrist mechanism for a pick-and-place 3-DOF parallel robot with an increased workspace by using an additional straight axis at its top. We performed SolidWorks® modeling- and ANSYS®-based structural analysis of a pinion gear, which is most vulnerable to the force from a 3-DOF wrist mechanism, to lighten the robot weight for performing various tasks. When the initial analysis results considerably differed from the theoretical values calculated in advance, we checked and identified the errors in the contact conditions or input values. Ultimately, it is believed that the methodology presented in this paper will help in mitigating errors during analysis and determine the accurate values for a lightweight 3-DOF wrist mechanism for a parallel robot with an expanded workspace.

Kinematic Analysis of a Binary Robot Manipulator (2진 로봇 매니퓰레이터의 기구학적 해석)

  • 류길하
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.162-168
    • /
    • 1998
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot's trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. This paper develops algorithms for kinematics and workspace analysis of a binary manipulator.

  • PDF

Behavior Planning for Humanoid Robot Using Behavior Primitive (행동 프리미티브 기반 휴머노이드 로봇의 행동 계획)

  • Noh, Su-Hee;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.108-114
    • /
    • 2009
  • In this paper, we presents a behavior planning for humanoid robots using behavior primitive in 3 dimensional workspace. Also, we define behavior primitives that humanoid robot accomplishes various tasks effectively. Humanoid robot obtains information of the outside environment and its inner information from various sensors in complex workspace with various obstacles. We verify our approach on a developed small humanoid robot using embedded vision and sensor system in a experimental environment. The experimental results show that the humanoid robot performs its tasks fast and effectively.

Cooperative Multiple Robot Localization utilizing Correlation between GPS Data Errors (GPS 데이터 오차 간의 상관 관계를 활용한 군집 로봇의 위치 추정)

  • Jo, Kyoung-Hwan;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • It is essential to estimating positions of multiple robots in order to perform cooperative task in common workspace. Accordingly, we propose a new approach of cooperative localization for multiple robots utilizing correlation among GPS errors in common workspace. Assuming that GPS data of individual robot are correlated strongly as the distance among robots are close, it is confirmed that the proposed method provides improved localization accuracy. In addition, we define two operational parameters to apply proposed method in multiple robot system. With mentioned two parameters, we present a practical solution to accumulated position error in traveling long distance.

  • PDF

Cooperative Localization in 2D for Multiple Mobile Robots by Optimal Fusion of Odometer and Inexpensive GPS data (다중 이동 로봇의 주행 계와 저가 GPS 데이터의 최적 융합을 통한 2차원 공간에서의 위치 추정)

  • Jo, Kyoung-Hwan;Lee, Ji-Hong;Jang, Choul-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • We propose a optimal fusion method for localization of multiple robots utilizing correlation between GPS on each robot in common workspace. Each mobile robot in group collects position data from each odometer and GPS receiver and shares the position data with other robots. Then each robot utilizes position data of other robot for obtaining more precise estimation of own position. Because GPS data errors in common workspace have a close correlation, they contribute to improve localization accuracy of all robots in group. In this paper, we simulate proposed optimal fusion method of odometer and GPS through virtual robots and position data.

  • PDF

Path Planning for Mobile Robot in Unstructured Workspace Using Genetic Algorithms (유전 알고리즘을 이용한 미지의 장애물이 존재하는 작업공간내 이동 로봇의 경로계획)

  • Cho, Hyun-Chul;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2318-2320
    • /
    • 1998
  • A genetic algorithm for global and local path planning and collision avoidance of mobil robot in unstructured workspace is proposed. The genetic algorithm searches for a path in the entire and continuous free space and unifies global path planning and local path planning. The simulation shows the proposed method is an efficient and effective method when compared with the traditional collision avoidance algorithms.

  • PDF

Analysis and Design of a Novel 4-DOF High-Speed Parallel Robot (4자유도 고속 병렬 로봇의 해석 및 설계)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.206-215
    • /
    • 2016
  • Delta parallel robots are now widely used for high-speed applications. However, typical Delta robots, such as ABB Flexpicker suffer from rotating axis with passive prismatic joint subjected to critical speed and so requiring careful maintenance. In this paper, a novel 4-DOF high-speed parallel robot with four legs is presented, which consists of three legs with 90 degree arrangement for translational motions and one remaining leg with rack & pinion gears for rotational motion. The inverse kinematics, velocity, acceleration, statics, and inverse dynamics have been analyzed. From the workspace analysis and inverse dynamics simulation for 0.43 sec cycle time, the 4-axis parallel robot prototype with 12kg payload has been designed. In the future research, computed torque control methods will be developed for the prototype.

Study on Propeller Grinding Applied by a High Stiffness Robot (고감성 로봇을 이용한 프로펠러 연삭에 관한 연구)

  • Lee, M.K.;Park, B.O.;Park, K.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.56-65
    • /
    • 1997
  • This paper presents the robot program for propeller grinding. A robot manipulator is constructed by combining a parallel and a serial mechanism to increase high sitffness as well as workspace. The robot program involves inverse/direct kinematics, velocity mapping, Jacobian, and etc. They are cerived in efficient formulations and implemented in a real time control. A velocity control is used to measure the hight of a propeller blade with a touch probe and a position control is performed to grind the surface of the blade.

  • PDF

Triangular Cell Map Based Complete Coverage Navigation Method for Cleaning Robot

  • Oh, Joon-Seop;Park, Jin-Bae;Park, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.3-129
    • /
    • 2001
  • In this paper, a novel navigation method is presented for the cleaning robot in the unknown workspace. In order to do this, we propose a new map representation method and a complete coverage navigation method. First, we discuss a triangular cell map representation which makes the cleaning robot navigate with shorter path and increased flexibility than a rectangular cell map representation. Then we proposed a complete coverage navigation and map construction method which the cleaning robot can navigate the complete workspace although it has perfectly no information about environment. Finally, we evaluate the performance of our proposed triangular cell map comparing to that of the rectangular cell map via the existing ...

  • PDF

Obstacle-avoidance Algorithm using Reference Joint-Velocity for Redundant Robot Manipulator with Fruit-Harvesting Applications

  • Y.S. Ryuh;Ryu, K.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.638-647
    • /
    • 1996
  • Robot manipulators for harvesting fruits must be controlled to track the desired path of end-effector to avoid obstacles under the consideration of collision free area and safety path. This paper presents a robot path control algorithm to secure a collision free area with the recognition of work environments. The flexible space, which does not damage fruits or branches of tree due to their flexibility and physical properties , extends the workspace. Now the task is to control robot path in the extended workspace with the consideration of collision avoidance and velocity limitation at the time of collision concurrently. The feasibility and effectiveness of the new algorithm for redundant manipulators were tested through simulations of a redundant manipulator for different joint velocities.

  • PDF