• Title/Summary/Keyword: Robot Vehicle

Search Result 380, Processing Time 0.032 seconds

Design and Test of a 20 kg-class Tilt-duct VTOL Aerial Robot (20 kg급 틸트-덕트 수직이착륙 비행로봇의 설계 및 시험)

  • Chang, Sungho;Cho, Am;Choi, Seongwook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1095-1102
    • /
    • 2016
  • This paper presents the results of the design, fabrication and tether test for a gross weight 20 kg tilt-duct VTOL aerial robot. The tilt-duct vehicle, a tri-ducts air-vehicle, which composed of two main tilt ducts for thrust and an aft-fan for pitch attitude control, has been developed as an aerial platform. The research on the air vehicle has been focused on the hover characteristics and controllability to improve the thrust and stability. The tether test for measuring various performance of vehicle and evaluating controllability have been carried out to figure out effects of modified main-prop linkage, actuator, duct configuration and control surfaces.

A Study on Energy Efficiency of Quadruped Walking Robot (4족 보행 로봇의 에너지효율에 관한 연구)

  • 안병원;배철오;박영산;박중순;이성근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.309-312
    • /
    • 2003
  • Though a legged robot has high terrain adaptability as compared with a wheeled vehicle, its moving speed is considerably low in general. For attaining a high moving speed with a legged robot, a dynamically stable walking, such as running for a biped robot and a trot gait or a bound gait for a quadruped robot, is a promising solution. However, energy efficiency of a dynamically stable walking is generally lower than the efficiency of a stable gait such as a crawl gait. In this paper, we present an experimental study on the energy efficiency of a quadruped walking vehicle. Energy consumption of two walking patterns for a trot gait is investigated though experiments using a TITAN-VIII.

  • PDF

Driving Performance Simulation of Mining Robot for SMS deposits (해저열수광상 채광 로봇의 해저면 주행성능 시뮬레이션)

  • Lee, Chang-Ho;Kim, Hyung-Woo;Hong, Sup;Kim, Sung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.80-86
    • /
    • 2013
  • KIOST developed a deep-sea mining robot called "MineRo" to collect manganese nodules in 2007. MineRo operates on flat ground. SMS (seafloor massive sulfide) deposits are shaped like undulating mountains. This paper deals with a numerical analysis model of a mining robot for SMS deposits. The mining robot consists of a tracked vehicle, chassis structure with a turntable, boom arm with 2 articulations, excavation tool, discharging unit, hydro-electric system, and sensing-and-monitoring system. In order to compare and analyze the dynamic responses of the driving mechanism, various tracked vehicles are modeled using commercial software. Straight driving simulations are conducted under undulating ground conditions. A conceptual design of a mining robot with four track systems for SMS deposits is modeled on the basis of these results.

Study on the Design Constraints of the Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (Part 1 - Design Guideline) (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 제약 사항들에 대한 연구 (Part 1 - 설계지침))

  • 한승철;이화조;김은찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.69-76
    • /
    • 2004
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.

A Study on the Behavior of Skid Sleeving on Unmanned Wheeled Vehicle with Suspension System (6x6 인휠로봇차량의 회전차조향거동에 관한 연구)

  • Cho, Sung-Won;Han, Chang-Soo;Lee, Jeong-Yeob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • The skid-steering method that applied a number of mobile robot currently is very effective in narrow area. But it contains several problems of its natural properties, slip, occurred by different direction between vehicle's driving and wheel's rotary. From this thesis we want to suggest suitable structure of $6{\times}6$ skid steering wheeled vehicle and method of driving by analyzing the behavior of $6{\times}6$ skid-steered wheeled vehicle by engineering analytical method

Development of War-robot using Real-Time Sensing and 4-bar linkage (Real-Time Sensing 및 4-bar linkage를 이용한 격투기로봇 개발)

  • 최은재;박세환;임상헌;정진만;정원지
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.873-876
    • /
    • 2001
  • Micro-robots using microprocessor are mainly classified as line-tracer, micro-mouse, and war-robot. This paper presents the development of the war-robot mechanism with vehicle-style using RC-servo motors and actuators using 4-bar linkage and infrared sensors. Especially the algorithm of conquering other war-robots is proposed based on the skill of belly-throw of Korean wrestling.

  • PDF

THE SOLUTION OF HARDWARE OF ROBOT CONTROL SYSTEM (로봇 제어를 위한 시스템의 하드웨어 구성)

  • Bui-Quang, Duoc
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.474-479
    • /
    • 2004
  • This paper presents an economical solution of the control system of robot, which is widely applied to sophisticated robots. The proposed control system is built on a foundation that is combined between driver motor, PC controlled servo-motor control card, and driver software. The solution had been applied to design hardware of controlled 6-DOF (Degree Of Freedom) robot. The controlled system is used to control VML Robot (Vehicle Mechatronic Lab). Addition, because of flexibility of the solution, the controller can be suit with widely robots at used servo-moto.

  • PDF

Behavior Analysis of In-wheel Drive Type 6WD/6WS Vehicle Based on System Modeling and Driving Simulation (시스템 모델링 및 주행 시뮬레이션을 통한 인휠드라이브 타입 6WD/6WS 차량 플랫폼의 주행 거동 분석)

  • Lee, Jung-Yeob;Suh, Seung-Whan;Shon, Woong-Hee;Yu, Seung-Nam;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.353-360
    • /
    • 2010
  • A skid-steering method which applied to the various mobile robot platforms currently shows its effectiveness in the specified field areas and purposes. This system contains however, several problems of its intrinsic properties such as slippages occurred by different moving direction between vehicle's driving and wheel's rotary and difficulties of driving performance control and so on. This paper deals with the suggestion of suitable control algorithm for 6WD/6WS skid steering wheeled vehicle and verified its feasibility by analyzing the behavior of 6WD/6WS skid-steered wheeled vehicle model and by applying the engineering analytical method to the considered mobile platform. The Performance of vehicle model is evaluated by using slip mode control to follow the steering input and, as a future work, this control algorithm could be applied to real 6WD/6WS in-wheel drive type vehicle finally.

Platform Design of Caterpillar Typed Electrical Vehicle (궤도형 전기 차량의 플랫폼 설계)

  • Lee, Yong-Jun;Chang, Young-Hak;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • In this paper, a platform design of caterpillar typed electrical vehicle is proposed. Nowadays, there have been many researches on mobile robots in the various ways. Many different fields such as military, exploration, agricultural assistance and disaster relief have applied the mobile robot. Design condition of stable angle, upset angle is reflect to caterpillar typed electrical vehicle. To experiment, developed a caterpillar typed electrical vehicle and design a driving controller. Developed caterpillar typed electrical vehicle is tested about operating and driving. Test environment is consisted of driving on flatland and climbing 15 degree and outdoor 40 degree slope. It is confirmed that developed tracked electric vehicular robot can driving and climbing.