• 제목/요약/키워드: Robot Trajectory Optimization

검색결과 68건 처리시간 0.031초

An Evolutionary Optimization Approach for Optimal Hopping of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2420-2426
    • /
    • 2015
  • This paper proposes an evolutionary optimization approach for optimal hopping of humanoid robots. In the proposed approach, the hopping trajectory is generated by a central pattern generator (CPG). The CPG is one of the biologically inspired approaches, and it generates rhythmic signals by using neural oscillators. During the hopping motion, the disturbance caused by the ground reaction forces is compensated for by utilizing the sensory feedback in the CPG. Posture control is essential for a stable hopping motion. A posture controller is utilized to maintain the balance of the humanoid robot while hopping. In addition, a compliance controller using a virtual spring-damper model is applied for stable landing. For optimal hopping, the optimization of the hopping motion is formulated as a minimization problem with equality constraints. To solve this problem, two-phase evolutionary programming is employed. The proposed approach is verified through computer simulations using a simulated model of the small-sized humanoid robot platform DARwIn-OP.

Locationing of telemanipulator based on task capability

  • Park, Young-Soo;Yoon, Jisup;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.392-395
    • /
    • 1995
  • This paper presents a time efficient method for determining a sequence of locations of a mobile manipulator that facilitates tracking of continuous path in cluttered environment. Given the task trajectory in the form of octree data structure, the algorithm performs characterization of task space and subsequent multistage optimization process to determine task feasible locations of the robot. Firstly, the collision free portion of the trajectory is determined and classified according to uniqueness domains of the inverse kinematics solutions. Then by implementing the extent of task feasible subspace into an optimization criteria, a multistage optimization problem is formulated to determines the task feasible locations of the mobile manipulator. The effectiveness of the proposed method is shown through a simulation study performed for a 3-d.o.f. manipulator with generic kinematic structure.

  • PDF

이동용 로봇의 퍼지 기반 추적 제어 (Fuzzy Rule Based Trajectory Control of Mobile Robot)

  • 이윤형;진강규;최형식;박한일;장하용;소명옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.109-115
    • /
    • 2010
  • 본 논문은 퍼지 제어를 통한 이동용 로봇에 대한 추적 제어에 대해서 다루고 있다. 이동용 로봇은 Mamdani 형식의 퍼지 제어기로 제어 된다. 퍼지 제어기에 있어서 이동용 로봇과 목표 사이의 각도와 각도의 변화율이 입력으로 사용되고, 출력으로 조향각이 추론되어 제어입력이 된다. 퍼지 규칙은 전문가의 경험적 지식을 참조하여 7개를 사용하였다. 또한 퍼지 제어기 설계에 있어서 하나의 관심 분야인 환산계수(scaling factor) 조정 방법에 대해 제안한다. 본 논문에서는 이를 위해 파라미터 최적화 분야에서 잘 알려진 실수코딩 유전알고리즘을 적용하였다. 시뮬레이션을 통해 다양한 초기 조향각이 주어진 경우, 목표치에 대한 추적 안정성을 보여 퍼지 제어기의 유효성이 확인된다.

Near-optimum trajectory planning for robot manipulators

  • Yamamoto, Motoji;Marushima, Shinya;Mohri, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.621-626
    • /
    • 1989
  • An efficient algorithm for planning near-optimum trajectory of manipulators is proposed. The algorithm is divided into two stages. The first one is the optimization of time trajectory with given spatial path. And the second one is the optimization of the spatial path itself. To consider the second problem, the manipulator dynamics is represented using the path parameter "s", then a differential equation corresponding to the dynamics is solved as two point boundary value problem. In this procedure, the gradient method is used to calculate improved input torques.t torques.

  • PDF

보행 재활 로봇 개발을 위한 1자유도 무릎 관절 설계 (Design of an 1 DOF Assistive Knee Joint for a Gait Rehabilitation Robot)

  • 이상협;신성열;이준원;김창환
    • 로봇학회논문지
    • /
    • 제8권1호
    • /
    • pp.8-19
    • /
    • 2013
  • One of the important issues for structural and electrical specifications in developing a robot is to determine lengths of links and motor specifications, which need to be appropriate to the purpose of robot. These issues become more critical for a gait rehabilitation robot, since a patient wears the robot. Prior to developing an entire gait rehabilitation robot, designing of a 1DOF assistive knee joint of the robot is considered in this paper. Human gait motions were used to determine an allowable range of knee joint that was rotated with a linear type actuator (ball-screw type) and links. The lengths of each link were determined by using an optimization process, minimizing the stroke of actuator and the total energy (kinetic and potential energy). Kinetic analysis was performed in order to determine maximum rotational speed and maximum torque of the motor for tracking gait trajectory properly. The prototype of 1 DOF assistive knee joint was built and examined with a impedance controller.

신경망 최적화 회로에 의한 여유자유도를 갖는 로보트의 제어 (Redundant Robot Control by Neural Optimization Networks)

  • 현웅근;서일홍
    • 대한전기학회논문지
    • /
    • 제39권6호
    • /
    • pp.638-648
    • /
    • 1990
  • An effective resolved motion control method of redundant manipulators is proposed to minimize the energy consumption and to increase the dexterity while satisfying the physical actuator constraints. The method employs the neural optimization networks, where the computation of Jacobian matrix is not required. Specifically, end effector movement resulting from each joint differential motion is first separated into orthogonal and tangential components with respect to a given desired trajectory. Then the resolved motion is obtained by neural optimization networks in such a way that 1) linear combination of the orthogonal components should be null 2) linear combination of the tangential components should be the differential length of the desired trajectory, 3) differential joint motion limit is not violated, and 4) weighted sum of the square of each differential joint motion is minimized. Here the weighting factors are controlled by a newly defined joint dexterity measure as the ratio of the tangential and orthogonal components.

  • PDF

A method of minimum-time trajectory planning ensuring collision-free motion for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.990-995
    • /
    • 1990
  • A minimum-time trajectory planning for two robot arms with designated paths and coordination is proposed. The problem considered in this paper is a subproblem of hierarchically decomposed trajectory planning approach for multiple robots : i) path planning, ii) coordination planning, iii) velocity planning. In coordination planning stage, coordination space, a specific form of configuration space, is constructed to determine collision region and collision-free region, and a collision-free coordination curve (CFCC) passing collision-free region is selected. In velocity planning stage, normal dynamic equations of the robots, described by joint angles, velocities and accelerations, are converted into simpler forms which are described by traveling distance along collision-free coordination curve. By utilizing maximum allowable torques and joint velocity limits, admissible range of velocity and acceleration along CFCC is derived, and a minimum-time velocity planning is calculated in phase plane. Also the planning algorithm itself is converted to simple numerical iterative calculation form based on the concept of neural optimization network, which gives a feasible approximate solution to this planning problem. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robots in common workspace is illustrated.

  • PDF

분리된 조작도를 이용한 여유자유도 로봇의 최적 자세에 관한 연구 (Study on the Optimal Posture for Redundant Robot Manipulators Based on Decomposed Manipulability)

  • 이지홍;원경태
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.249-256
    • /
    • 1999
  • The conventional robot manipulability is decomposed into linear manipulability and angular manipulability so that they may be analysed and visualized in easy way even in the case of 3 dimensional task space with 6 variables. After the Jacobian matrix is decomposed into linear part and angular part, constraint on joint velocities is transformed into linear task velocity and angular task velocity through the decomposed Jacobian matrices. Under the assumption of redundant robot manipulators, several optimization problems which utilize the redundancy are formulated to be solved by linear programming technique or sequential quadratic programming technique. After deriving the solutions of the optimization problems, we give graphical interpretations for the solutions.

  • PDF

하이브리드형 로봇의 동역학적 모델링과 해석에 관한 연구

  • 전승수;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 춘계학술대회 논문집
    • /
    • pp.315-319
    • /
    • 1993
  • A dynamic modeling, analysis, and optimum design issuess for the Hybrid type of robot are addressed. The dynamic modeling can be used to describe acceleration and velocity properties of the system explicitly in terms of the actuating forces is coded in C language based on the kinematic influence coefficients(KIC). By using this modeling simulation, the actuating forces needed for the robot follows the given trajectory are calculated. Also, for the design concept, the optimum geometric configuration of the system that minimizes the maximum actuating forces is found by using the optimization techique.

수면 지면 동시보행을 위한 Klann 기구 기반 주행메커니즘 최적설계 (Optimal Design of Klann-linkage based Walking Mechanism for Amphibious Locomotion on Water and Ground)

  • 김현규;정민석;신재균;서태원
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.936-941
    • /
    • 2014
  • Walking mechanisms are very important for legged robots to ensure their stable locomotion. In this research, Klann-linkage is suggested as a walking mechanism for a water-running robot and is optimized using level average analysis. The structure of the Klann-linkage is introduced first and design variables for the Klann-linkage are identified considering the kinematic task of the walking mechanism. Next, the design problem is formulated as a path generation optimization problem. Specifically, the desired path for the foot-pad is defined and the objective function is defined as the structural error between the desired and the generated paths. A process for solving the optimization problem is suggested utilizing the sensitivity analysis of the design variables. As a result, optimized lengths of Klann-linkage are obtained and the optimum trajectory is obtained. It is found that the optimized trajectory improves the cost function by about 62% from the initial one. It is expected that the results from this research can be used as a good example for designing legged robots.