• Title/Summary/Keyword: Robot Task

Search Result 630, Processing Time 0.028 seconds

A Survey on the Recognition of Rehabilitative Robots for Therapy and Self-Efficacy in University Students Enrolled in the Department of Physical Therapy (물리치료학과 학생들의 재활로봇에 대한 인식도와 자기효능감 조사)

  • Kim, Tae-Ho;Kim, Da-Hyeon;Kim, Se-Yeon;Park, Ha-Yeoung;Lee, Eun-Kyung;Jung, In-Seon;Chun, Ji-Youn;Kim, Min-Hee
    • PNF and Movement
    • /
    • v.19 no.1
    • /
    • pp.115-125
    • /
    • 2021
  • Purpose: This study aimed to investigate basic data on the recognition of rehabilitation robots and self-efficacy through general characteristics of students in the department of physical therapy. Methods: This study surveyed 100 students in the Department of Physical Therapy at E University in Seongnam using Google Form, an online survey tool. The questionnaire consisted of 64 questions including 15 questions on general characteristics, 13 questions regarding recognition of rehabilitative robots, and 36 questions about self-efficacy. General self-efficacy consisted of three sub-factors: confidence, self-regulation efficacy, and task difficulty preference. Results: The recognition of rehabilitative robots according to general characteristics showed significant differences in age, level of education, and experience in searching rehabilitative robots; according to general characteristics, self-efficacy showed significant differences dependent on age and gender (p < 0.05). In addition, recognition of rehabilitation robots for students in the Department of Physical Therapy was found to have a significant effect on robot use self-efficacy (p < 0.05). Conclusion: There were significant differences in the scores of rehabilitation robot recognition and self-efficacy according to the general characteristics of students in the Department of Physical Therapy. For such reasons, it is important for students to have an opportunity to get educated on rehabilitation robots; in order to achieve this goal, domestic studies on rehabilitation robots must be actively conducted. The technological development of rehabilitation robots and the establishment of a system for domestic rehabilitation robots from both social and legal standpoints were found to be necessary based on a volume of domestic research.

Development of the Local Area Design Module for Planning Automated Excavator Work at Operation Level (자동화 굴삭로봇의 운용단위 작업계획수립을 위한 로컬영역설계모듈 개발)

  • Lee, Seung-Soo;Jang, Jun-Hyun;Yoon, Cha-Woong;Seo, Jong-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.363-375
    • /
    • 2013
  • Today, a shortage of the skilled operator has been intensified gradually and the necessity of an earthwork in extreme environment operators are difficult to access is increasing for the purpose of resource development and new living space creation. For this reason, an effort to develop an unmanned excavation robot for fully automated earthwork system is continuing globally. In Korea, a research consortium called 'Intelligent Excavation System' has been formed since 2006 as a part of Construction Technology Innovation Program of Ministry of Land, Transport and Maritime Affairs of Korea. Among detailed technologies of the Task Planning System is one of the core technologies of IES, this paper explains research and development process of the Local Area Design Module, which provides informatization unit to create automated excavators' work command information at operation level such as location, range, target, and sequence for excavation work. Designing of Local Area should be considered various influential factors such as excavator's specification, working mechanism, heuristics, and structural stability to create work plan guaranteed safety and effectiveness. For this research, conceptual and detail design of the Local Area is performed for analyzing design element and variable, and quantization method of design specification corresponding with heuristics and structural safety is generated. Finally, module is developed through constructed algorithm and developed module is verified.

EEG Feature Classification for Precise Motion Control of Artificial Hand (의수의 정확한 움직임 제어를 위한 동작 별 뇌파 특징 분류)

  • Kim, Dong-Eun;Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • Brain-computer interface (BCI) is being studied for convenient life in various application fields. The purpose of this study is to investigate a changing electroencephalography (EEG) for precise motion of a robot or an artificial arm. Three subjects who participated in this experiment performed three-task: Grip, Move, Relax. Acquired EEG data was extracted feature data using two feature extraction algorithm (power spectrum analysis and multi-common spatial pattern). Support vector machine (SVM) were applied the extracted feature data for classification. The classification accuracy was the highest at Grip class of two subjects. The results of this research are expected to be useful for patients required prosthetic limb using EEG.

Multiple Path-planning of Unmanned Autonomous Forklift using Modified Genetic Algorithm and Fuzzy Inference system (수정된 유전자 알고리즘과 퍼지 추론 시스템을 이용한 무인 자율주행 이송장치의 다중경로계획)

  • Kim, Jung-Min;Heo, Jung-Min;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1483-1490
    • /
    • 2009
  • This parer is presented multiple path-planning of unmanned autonomous forklift using modified genetic algorithm and fuzzy inference system. There are a task-level feedback method and a method that path is dynamically replaned in realtime while the autonomous vehicles are moving by means of an optimal algorithm for existing multiple path-planning. However, such methods cause malfunctions and inefficiency in the sense of time and energy, and path-planning should be dynamically replanned in realtime. To solve these problems, we propose multiple path-planning using modified genetic algorithm and fuzzy inference system and show the performance with autonomous vehicles. For experiment, we designed and built two autonomous mobile vehicles that equipped with the same driving control part used in actual autonomous forklift, and test the proposed multiple path-planning algorithm. Experimental result that actual autonomous mobile vehicle, we verified that fast optimized path-planning and efficient collision avoidance are possible.

A Heuristic Search Planner Based on Component Services (컴포넌트 서비스 기반의 휴리스틱 탐색 계획기)

  • Kim, In-Cheol;Shin, Hang-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.159-170
    • /
    • 2008
  • Nowadays, one of the important functionalities required from robot task planners is to generate plans to compose existing component services into a new service. In this paper, we introduce the design and implementation of a heuristic search planner, JPLAN, as a kernel module for component service composition. JPLAN uses a local search algorithm and planning graph heuristics. The local search algorithm, EHC+, is an extended version of the Enforced Hill-Climbing(EHC) which have shown high efficiency applied in state-space planners including FF. It requires some amount of additional local search, but it is expected to reduce overall amount of search to arrive at a goal state and get shorter plans. We also present some effective heuristic extraction methods which are necessarily needed for search on a large state-space. The heuristic extraction methods utilize planning graphs that have been first used for plan generation in Graphplan. We introduce some planning graph heuristics and then analyze their effects on plan generation through experiments.

Teleoperation Using Reconstructed Graphic Model (재구성된 그래픽 모델을 이용한 원격제어)

  • Chung, Seong-Youb;Yoon, Hyun-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3876-3881
    • /
    • 2012
  • In typical master/slave teleoperation systems, a human operator generally manipulates the master to control the slave through the visual information like camera image. However, the operator may get into trouble due to the limited visual information depending on the camera positions and the delay on the visual information because of low communication bandwidth. To cope with this inherit problem in the camera-based teleoperation system, this paper presents a teleoperation system using a reconstructed graphic model instead of the camera image. The proposed teleoperation system consists of a robot control module, a master module using a force-reflective joystick, and a graphic user interface (GUI) module. The graphic user interface module provides the operator with a 3D model reconstructed using a small set of sensing data received from the remote site. The proposed teleoperation system is evaluated through a peg-in-hole assembly task.

A Bio-Inspired Modeling of Visual Information Processing for Action Recognition (생체 기반 시각정보처리 동작인식 모델링)

  • Kim, JinOk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.299-308
    • /
    • 2014
  • Various literatures related computing of information processing have been recently shown the researches inspired from the remarkably excellent human capabilities which recognize and categorize very complex visual patterns such as body motions and facial expressions. Applied from human's outstanding ability of perception, the classification function of visual sequences without context information is specially crucial task for computer vision to understand both the coding and the retrieval of spatio-temporal patterns. This paper presents a biological process based action recognition model of computer vision, which is inspired from visual information processing of human brain for action recognition of visual sequences. Proposed model employs the structure of neural fields of bio-inspired visual perception on detecting motion sequences and discriminating visual patterns in human brain. Experimental results show that proposed recognition model takes not only into account several biological properties of visual information processing, but also is tolerant of time-warping. Furthermore, the model allows robust temporal evolution of classification compared to researches of action recognition. Presented model contributes to implement bio-inspired visual processing system such as intelligent robot agent, etc.

Localization of Unmanned Ground Vehicle using 3D Registration of DSM and Multiview Range Images: Application in Virtual Environment (DSM과 다시점 거리영상의 3차원 등록을 이용한 무인이동차량의 위치 추정: 가상환경에서의 적용)

  • Park, Soon-Yong;Choi, Sung-In;Jang, Jae-Seok;Jung, Soon-Ki;Kim, Jun;Chae, Jeong-Sook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.700-710
    • /
    • 2009
  • A computer vision technique of estimating the location of an unmanned ground vehicle is proposed. Identifying the location of the unmaned vehicle is very important task for automatic navigation of the vehicle. Conventional positioning sensors may fail to work properly in some real situations due to internal and external interferences. Given a DSM(Digital Surface Map), location of the vehicle can be estimated by the registration of the DSM and multiview range images obtained at the vehicle. Registration of the DSM and range images yields the 3D transformation from the coordinates of the range sensor to the reference coordinates of the DSM. To estimate the vehicle position, we first register a range image to the DSM coarsely and then refine the result. For coarse registration, we employ a fast random sample matching method. After the initial position is estimated and refined, all subsequent range images are registered by applying a pair-wise registration technique between range images. To reduce the accumulation error of pair-wise registration, we periodically refine the registration between range images and the DSM. Virtual environment is established to perform several experiments using a virtual vehicle. Range images are created based on the DSM by modeling a real 3D sensor. The vehicle moves along three different path while acquiring range images. Experimental results show that registration error is about under 1.3m in average.

Fast On-Road Vehicle Detection Using Reduced Multivariate Polynomial Classifier (축소 다변수 다항식 분류기를 이용한 고속 차량 검출 방법)

  • Kim, Joong-Rock;Yu, Sun-Jin;Toh, Kar-Ann;Kim, Do-Hoon;Lee, Sang-Youn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.639-647
    • /
    • 2012
  • Vision-based on-road vehicle detection is one of the key techniques in automotive driver assistance systems. However, due to the huge within-class variability in vehicle appearance and environmental changes, it remains a challenging task to develop an accurate and reliable detection system. In general, a vehicle detection system consists of two steps. The candidate locations of vehicles are found in the Hypothesis Generation (HG) step, and the detected locations in the HG step are verified in the Hypothesis Verification (HV) step. Since the final decision is made in the HV step, the HV step is crucial for accurate detection. In this paper, we propose using a reduced multivariate polynomial pattern classifier (RM) for the HV step. Our experimental results show that the RM classifier outperforms the well-known Support Vector Machine (SVM) classifier, particularly in terms of the fast decision speed, which is suitable for real-time implementation.

Recognition of 3D Environment for Intelligent Robots (지능로봇을 위한 3차원 환경인식)

  • Jang, Dae-Sik
    • Journal of Internet Computing and Services
    • /
    • v.7 no.5
    • /
    • pp.135-145
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for intelligent robots. First. we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds. The experimental results show the feasibility of real-time and behavior-oriented 3D modeling of workspace for robotic manipulative tasks.

  • PDF