• Title/Summary/Keyword: Robot Sensor

Search Result 1,588, Processing Time 0.03 seconds

A 3-D Position Compensation Method of Industrial Robot Using Block Interpolation (블록 보간법을 이용한 산업용 로봇의 3차원 위치 보정기법)

  • Ryu, Hang-Ki;Woo, Kyung-Hang;Choi, Won-Ho;Lee, Jae-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.235-241
    • /
    • 2007
  • This paper proposes a self-calibration method of robots those are used in industrial assembly lines. The proposed method is a position compensation using laser sensor and vision camera. Because the laser sensor is cross type laser sensor which can scan a horizontal and vertical line, it is efficient way to detect a feature of vehicle and winding shape of vehicle's body. For position compensation of 3-Dimensional axis, we applied block interpolation method. For selecting feature point, pattern matching method is used and 3-D position is selected by Euclidean distance mapping between 462 feature values and evaluated feature point. In order to evaluate the proposed algorithm, experiments are performed in real industrial vehicle assembly line. In results, robot's working point can be displayed 3-D points. These points are used to diagnosis error of position and reselecting working point.

Grid Map Building based on Reliability Model of Sonar Data (초음파 데이터의 신뢰도 모델 기반 지도 작성)

  • Han, Hye-Min;Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1219-1226
    • /
    • 2011
  • This paper proposes a novel approach to building an occupancy grid map using sonar data. It is very important for a mobile robot to recognize and construct its surrounding environments for navigation. However, the grid map constructed by ultrasonic sensors cannot represent a realistic shape of given environments due to incorrect sonar measurements caused by specular reflection. To overcome this problem, we propose an advanced sonar sensor model which consists of distance and shape factors used to determine the reliability of sensor data. Through this sensor model, a robot can build a high-quality grid map. The proposed method was verified by various experiments and showed that the robot could build an accurate map with sonar data in various indoor environments.

Stable walking of biped robots using one angular velocity sensor (각속도 센서를 이용한 이족로봇의 안정적인 보행 구현)

  • Oh, Sung-Nam;Yun, Dong-Woo;Son, Young-Ik;Kim, Kab-Il;Lim, Seung-Chul;Kang, Hwan-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.309-311
    • /
    • 2006
  • This paper aims to provide a way to improve dynamic stability of biped robots against undesirable disturbances. By using an angular velocity sensor on its shoulder, we can make a medium-sized biped robot walk stably against an impulsive disturbance. The measured signal from the sensor in used for compensating the reference angles of ankle, knee, and pelvis joints. An experiment shows that the stability of the robot is much enhanced by using a cheap sensor and simple algorithm. This kind of research helps biped robots walk more stably in real environments.

  • PDF

Environmental Perception Considering Beam Opening Angle and Specular Reflection of Ultrasonic Sensors (초음파센서의 지향성 및 경면반사현상을 고려한 환경인식)

  • Ha, Yun-Su;Kim, Duck-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.919-926
    • /
    • 2006
  • To move in unknown or uncertain environment, a mobile robot must collect informations from various sensors and use it to construct a representation of the external world. Ultrasonic sensor can provide range data for this purpose in a simple cost-effective way. However conventional ultrasonic sensor system for a mobile robot are not sufficient for environment recognition because of their large beam opening angle, specular reflection. This paper describe on environmental perception algorithm which can solve these problems in case using ultrasonic sensor. The algorithm consist of two parts. One is to solve beam opening angle problem by fusion from multiple ultrasonic sensors. The other is to cope with specular reflection problem in wall line extract, which is based on Hough Transform. Experiments to verify the validity of the proposed algorithm are carried out, and the results are provided at last part in this paper.

Robust Global Localization based on Environment map through Sensor Fusion (센서 융합을 통한 환경지도 기반의 강인한 전역 위치추정)

  • Jung, Min-Kuk;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.2
    • /
    • pp.96-103
    • /
    • 2014
  • Global localization is one of the essential issues for mobile robot navigation. In this study, an indoor global localization method is proposed which uses a Kinect sensor and a monocular upward-looking camera. The proposed method generates an environment map which consists of a grid map, a ceiling feature map from the upward-looking camera, and a spatial feature map obtained from the Kinect sensor. The method selects robot pose candidates using the spatial feature map and updates sample poses by particle filter based on the grid map. Localization success is determined by calculating the matching error from the ceiling feature map. In various experiments, the proposed method achieved a position accuracy of 0.12m and a position update speed of 10.4s, which is robust enough for real-world applications.

Hand Pressing Control Using the Five-Axis Force/Moment Sensor of Finger Rehabilitation (손가락 재활로봇의 5축 힘/모멘트센서를 이용한 손 누름제어)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.192-197
    • /
    • 2012
  • This paper describes the control of the hand fixing system attached to the finger rehabilitation robot for the rehabilitation exercise of patient's fingers. The finger rehabilitation robot is used to exercise the finger rehabilitation, and a patient's hand is safely fixed using the hand fixing system. In this paper, the hand fixing system was controlled with PD gains to fix a palm of the hand, and the characteristic test for the hand fixing system was carried out to sense the fixed hand movement of the front and the rear, that of the left and the right, and that of the upper. It is thought that the hand fixing system could safely fix the hand, and the movement of the fixed hand could be perceived using the five-axis force/moment sensor attached to the hand fixing system.

A Study on Emergency Monitoring Robot System by Back-Propagation Algorithm

  • Yoo, Sowol;Kim, Miae;Lee, Kwangok;Bae, Sanghyun
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.62-66
    • /
    • 2014
  • This study aims to implement the emergency monitoring robot system which predicts the current state of the patients without visiting the medical institutions by measuring the basic health status of the user's blood pressure, heartbeat, and basic health status of body temperature in the disaster emergency situation based on the Smart Grid. By arranging a large number of sensor(blood pressure, heartbeat, body temperature sensor) and measuring the bio signs, so the attached wireless XBee sensor can be stored in DB of robot, and it aims to draw the current state of the patients by analysis of stored bio data. Among 300 data obtained from the sensor, 1st data to 100th data were used for learning, and from 101st data to 300th data were used for assessment. 12 results were different among the total 300 assessment data, so it shows about 96% accuracy.

Estimation of human impedance and its application to collaboration work with robot (인간의 임피던스 추정 및 로봇과의 협력 작업으로의 적용)

  • 홍석규;김창호;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1812-1815
    • /
    • 1997
  • This paper treats the estimation of human impedance and their application to collaboration work robot. Initially, we performa an experiment at whcich teh human becomes a slave and the robot behaves like a master having F/T sensor on its end. the human impedance expressed interms of mass, damping, and stiffness properties are estimated based on the force data measured by F/T sensor and the positiion data of the robot. To show the effectiveness of the estimated human impedance, we perform the second experiment at which the roles of the human and the robot are reversed. It is shown that the robot using the estimated human impedance follows the trajectory commanded by human very smoothly.

  • PDF

Development of Intelligent Bed Robot System

  • Oh, Chang-Mok;Seo, Kap-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1535-1538
    • /
    • 2004
  • In this paper, an Intelligent Bed Robot System (IBRS) is proposed, that is a special bed equipped with robot manipulator. To assist a patient using IBRS, pose and motion estimation process is fundamental. It is designed to help the elderly and the disabled for their independent life in bed without other assistants. For this purpose, we use the pressure sensor distributed mattress for detecting the change of motion on the bed. Using that data, we control the robot arm to move to the appropriate position and serve to the user. In addition, we can estimate the user's intention based on the change of pressure and use those data to control the robot arm guide.

  • PDF

A Study on the Multi-Joint Rehabilitation System of an Industrial Robot

  • Lee, Yong-Seok;Jang, Jae-Ho;Sim, Hyung-Joon;Han, Chang-Soo;Han, Jung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.92-95
    • /
    • 2004
  • This study proposes an industrial rehabilitation robot system which can exercise two joints in 3 dimensional spaces. The robot kinematics analysis and the results of studies on each joint for the rehabilitation robot could verify possibility of rehabilitation motion to exercise a joint. The force and torques sensor not only measures a rehabilitation performance of subjects between the abnormal limb and the manipulator, but also carries out an important function of safety device to prevent accidents. Also, limit sensors and emergency stop switch are used for high safety in this system. In this real test, the possibility of rehabilitation robot system is evaluated by C&R ARM I which is similar to upper-limb.

  • PDF