• 제목/요약/키워드: Robot Sensor

검색결과 1,588건 처리시간 0.028초

실내 자율주행 로봇을 위한 벽과 모퉁이 인식방법 (Wall and Corner Recognition Method for Indoor Autonomous Mobile Robot)

  • 이만희;조황
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.529-531
    • /
    • 2004
  • For localization, it is very important for an autonomous mobile robot to be able to recognize indoor environment and match an object it detect to an object within a map developed either online or offline. Given the map defining the locations of geometric beacons like wall and comer existing in the robot operation environment, this paper presents a stereo ultrasonic sensor based method that can be conveniently used in recognizing the geometric beacons. The stereo ultrasonic sensor used in the experiment consists of an ultrasonic transmitter and two ultrasonic receivers placed symmetrically about the transmitter. Experiment shows that the proposed method is more efficient in recognizing wall and coner than the conventional method of using multiple number of transmitter-receiver pairs.

  • PDF

퍼지제어기를 이용한 무인차 항법제어 (Fuzzy Logic Controller for a Mobile Robot Navigation)

  • 정학영;이장규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.713-716
    • /
    • 1991
  • This paper describes a methodology of mobile robot navigation which is designed to carry heavy payloads at high speeds to be used in FMS(Flexible Manufacturing System) without human control. Intelligent control scheme using fuzzy logic is applied to the navigation control. It analyzes sensor readings from multi-sensor system, which is composed of ultrasonic sensors, infrared sensors and odometer, for environment learning, planning, landmark detecting and system control. And it is implemented on a physical robot, AGV(Autonomous Guided Vehicle) which is a two-wheeled, indoor robot. An on-board control software is composed of two subsystems, i.e., AGV control subsystem and Sensor control subsystem. The results show that the navigation of the AGV is robust and flexible, and a real-time control is possible.

  • PDF

밸런싱 메커니즘을 이용한 이륜형 자동차 형태의 이동로봇개발 : BalBOT VII (Development of Two Wheeled Car-like Mobile Robot Using Balancing Mechanism : BalBOT VII)

  • 이형직;정슬
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.289-297
    • /
    • 2009
  • This paper presents the development and control of a two wheeled car-like mobile robot using balancing mechanism whose heading control is done by turning the handle. The mobile inverted pendulum is a combined system of a mobile robot and an inverted pendulum system. A sensor fusion technique of low cost sensors such as a gyro sensor and a tilt sensor to measure the balancing angle of the inverted pendulum robot system accurately is implemented. Experimental studies of the trajectory following control task has been conducted by command of steering wheel while balancing.

  • PDF

실외 자율주행 로봇을 위한 다수의 동적 장애물 탐지 및 선속도 기반 장애물 회피기법 개발 (Multiple Target Tracking and Forward Velocity Control for Collision Avoidance of Autonomous Mobile Robot)

  • 김선도;노치원;강연식;강성철;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.635-641
    • /
    • 2008
  • In this paper, we used a laser range finder (LRF) to detect both the static and dynamic obstacles for the safe navigation of a mobile robot. LRF sensor measurements containing the information of obstacle's geometry are first processed to extract the characteristic points of the obstacle in the sensor field of view. Then the dynamic states of the characteristic points are approximated using kinematic model, which are tracked by associating the measurements with Probability Data Association Filter. Finally, the collision avoidance algorithm is developed by using fuzzy decision making algorithm depending on the states of the obstacles tracked by the proposed obstacle tracking algorithm. The performance of the proposed algorithm is evaluated through experiments with the experimental mobile robot.

화재감지를 위한 로봇 설계 및 데이터 처리 (Robot Design for Fire Detection and Data Processing)

  • 문용선;서영남;고낙용;노상현;박종규
    • 한국전자통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.31-36
    • /
    • 2010
  • 본 논문에서는 화재감지를 위한 자율이동로봇을 설계하였다. 로봇은 넓은 범위의 검출을 위해 회전하는 열 센서를 갖추고 있다. 열 감지 센서인 A2TPMI를 사용하였다. 안정적인 데이터를 획득위해 화재감지를 위한 데이터 처리방법으로 AD컨버터와 칼만 필터를 사용하여 하였다.

Kinect 센서를 사용한 휴머노이드 로봇의 제어 (Control of Humanoid Robot Using Kinect Sensor)

  • 김오선;한만수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.616-617
    • /
    • 2013
  • 본 논문에서는 Kinect 센서를 사용하여 인체의 특정 동작들을 감지하여 휴머노이드 로봇을 제어하는 방법을 소개한다. Kinect 센서의 depth 센서의 출력을 처리하여 인체의 각 joint 부분을 나타내는 인체 모형을 완성하였다. 인체 모형의 각 부분의 거리 및 각도를 계산하여 특정 동작을 검출하였으며 로봇에게 제어 명령을 블루투스 무선통신을 사용하여 전송한다.

  • PDF

플로우 네트워크를 이용한 지능형 로봇의 경로계획 (Path Planning for an Intelligent Robot Using Flow Networks)

  • 김국환;김형;김병수;이순걸
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.255-262
    • /
    • 2011
  • Many intelligent robots have to be given environmental information to perform tasks. In this paper an intelligent robot, that is, a cleaning robot used a sensor fusing method of two sensors: LRF and StarGazer, and then was able to obtain the information. Throughout wall following using laser displacement sensor, LRF, the working area is built during the robot turn one cycle around the area. After the process of wall following, a path planning which is able to execute the work effectively is established using flow network algorithm. This paper describes an algorithm for minimal turning complete coverage path planning for intelligent robots. This algorithm divides the whole working area by cellular decomposition, and then provides the path planning among the cells employing flow networks. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The proposed algorithm is applied to two different working areas, and verified that it is an optimal path planning method.

실내 환경에서의 이동로봇의 위치추정을 위한 카메라 센서 네트워크 기반의 실내 위치 확인 시스템 (Indoor Positioning System Based on Camera Sensor Network for Mobile Robot Localization in Indoor Environments)

  • 지용훈
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.952-959
    • /
    • 2016
  • This paper proposes a novel indoor positioning system (IPS) that uses a calibrated camera sensor network and dense 3D map information. The proposed IPS information is obtained by generating a bird's-eye image from multiple camera images; thus, our proposed IPS can provide accurate position information when objects (e.g., the mobile robot or pedestrians) are detected from multiple camera views. We evaluate the proposed IPS in a real environment with moving objects in a wireless camera sensor network. The results demonstrate that the proposed IPS can provide accurate position information for moving objects. This can improve the localization performance for mobile robot operation.

다양한 센서 융합을 통한 효율적인 모바일로봇 프레임워크 설계 (On the Design of an Efficient Mobile Robot Framework by Using Collaborative Sensor Fusion)

  • 김동환;조성현;양연모
    • 대한임베디드공학회논문지
    • /
    • 제6권3호
    • /
    • pp.124-131
    • /
    • 2011
  • There are many researches in unmanned vehicles such as UGV(Unmanned Ground Vehicle), AUV(Autonomous Underwater Vehicle). In these researches, differential wheeled mobile robots are mainly used to develop the experimental stage algorithm because of the simplicity of modeling and control. Usually a commercial product used in the study, but in order to operate a commercial product to the restrictions because there would need to use a fixed protocol. Using the microprocessor makes the internal sensors(encoder and INS) and external sensors(ultrasonic sensors, infrared sensors) operate and to determine commands for robot operation. This paper propose a mobile robot design for suitable purpose.

CPPS를 위한 산업용 매니플레이터의 힘 센서리스 외력 추정기 기반 적응 임피던스 제어 (Variable Impedance Control for Industrial Manipulators Based on Sensor-Less External Force Estimator for CPPS)

  • 박종천;한승용;진용식;이상문
    • 대한임베디드공학회논문지
    • /
    • 제14권5호
    • /
    • pp.259-267
    • /
    • 2019
  • This paper proposes a structure of a variable impedance control system based on sensor-less external force estimator of industrial manipulators for cyber physical production systems (CPPS). To implement CPPS, a feedback system is constructed by using the robot operating system (ROS) and an external force estimator which is designed to measure the external force applied to the manipulator without a force sensor. Based on the robot dynamics, the robot-human cooperating system for the cyber physics production system is implemented through a controller that changes the impedance characteristics of the manipulator according to the situation using the external force estimator. Simulation and experimental results verify the effectiveness of the proposed control system.