This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.
International journal of advanced smart convergence
/
제9권4호
/
pp.173-178
/
2020
As the fourth industrial revolution, in which people, objects, and information are connected as one, various fields such as smart energy, smart cities, artificial intelligence, the Internet of Things, unmanned cars, and robot industries are becoming the mainstream, drawing attention to big data. Among them, Smart Grid is a technology that maximizes energy efficiency by converging information and communication technologies into the power grid to establish a smart grid that can know electricity usage, supply volume, and power line conditions. Smart meters are equient that monitors and communicates power usage. We start with the goal of building a virtual smart grid and constructing a virtual environment in which real-time data is generated to accommodate large volumes of data that are small in capacity but regularly generated. A major role is given in creating a software/hardware architecture deployment environment suitable for the system for test operations. It is necessary to identify the advantages and disadvantages of the software according to the characteristics of the collected data and select sub-projects suitable for the purpose. The collected data was collected/loaded/processed/analyzed by the Hadoop ecosystem-based big data platform, and used to predict power demand through deep learning.
In this paper, the development of an autonomous electric vehicle for logistics with a robotic arm is introduced. The manual driving electric vehicle was converted into an electric vehicle platform capable of autonomous driving. For autonomous driving, an encoder is installed on the driving wheels, and an electronic power steering system is applied for automatic steering. The electric vehicle is equipped with a lidar sensor, a depth camera, and an ultrasonic sensor to recognize the surrounding environment, create a map, and recognize the vehicle location. The odometry was calculated using the bicycle motion model, and the map was created using the SLAM algorithm. To estimate the location of the platform based on the generated map, AMCL algorithm using Lidar was applied. A user interface was developed to create and modify a waypoint in order to move a predetermined place according to the logistics process. An A-star-based global path was generated to move to the destination, and a DWA-based local path was generated to trace the global path. The autonomous electric vehicle developed in this paper was tested and its utility was verified in a warehouse.
The objective of this study was to create intelligent rail robots that are optimized for facility management and implement digital twin systems for smart road tunnel management. An autonomous surveillance system is formed by combining the sensing platform consisting of railing robots, fixed cameras and environmental detection sensors with the digital twin data platform technology for tunnel monitoring and early fire suppression. In order to develop mobile rail robots for fire extinguishing, we also designed and manufactured robots for extinguishing & monitoring and fire extinguishing devices, and then we examined the optimization of all parts. Our next step was to build a digital twin for road tunnel management by developing continuous image display system and implementing 3D modeling. After constructing prototypes, we attempted simulations by configuring abnormal symptom scenarios, such as vehicles fires. This study's proposal proposes high-accuracy risk prediction services that will enable intelligent management of risks in the tunnel with early response at each stage, using the data collected from the intelligent rail robots and digital twin systems.
This paper proposes a novel mapping algorithm in Omni-directional Vision SLAM based on an obstacle's feature extraction using Lucas-Kanade Optical Flow motion detection and images obtained through fish-eye lenses mounted on robots. Omni-directional image sensors have distortion problems because they use a fish-eye lens or mirror, but it is possible in real time image processing for mobile robots because it measured all information around the robot at one time. In previous Omni-Directional Vision SLAM research, feature points in corrected fisheye images were used but the proposed algorithm corrected only the feature point of the obstacle. We obtained faster processing than previous systems through this process. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we remove the feature points of the floor surface using a histogram filter, and label the candidates of the obstacle extracted. Third, we estimate the location of obstacles based on motion vectors using LKOF. Finally, it estimates the robot position using an Extended Kalman Filter based on the obstacle position obtained by LKOF and creates a map. We will confirm the reliability of the mapping algorithm using motion estimation based on fisheye images through the comparison between maps obtained using the proposed algorithm and real maps.
자기 자신의 형태를 변형하거나 물리적인 결합으로 재구성하여 새로운 환경에 적응하는 모듈형 자가 결합 로봇은 많은 연구가 필요한 분야이다. 본 논문에서는 물리적으로 결합 가능한 모듈형 로봇을 위한 영상기반의 자가 결합 제어기를 제안한다. 먼저 실시간 영상처리가 가능한 모듈형 로봇 플랫폼을 설계하고, 컬러기반 물체 인식 방법을 구현하였다. 모듈형 로봇은 자가 결합을 위해 결합될 로봇 근처의 부목표점까지 장애물들을 회피하면서 주행해 가야 한다. 본 논문에서는 부 목표점의 추적을 위하여 영상처리를 통해 얻은 거리와 방향각 정보들을 사용한 퍼지 주행 제어기와 장애물 회피를 위한 퍼지 제어기를 제안하고, 제안된 퍼지 제어기들과 로봇의 절대 거리 및 방향각 정보를 사용하여 모듈형 로봇을 위한 자가 결합제어기를 구현하였다. 실제 제작된 두 대의 모듈형 로봇을 사용하여 다양한 환경에서 로봇간 거리와 방향각이 다른 상황에서 실험을 수행하여 제안된 자가 결합 제어 방법의 성능을 검증하였다.
The objective on this project is to develop a cooperative Field Robot (FR), by using a customize Open Control Platform (OCP) as design and development process. An OCP is a CORBA-based solution for networked control system, which facilitates the transitioning of control designs to embedded targets. In order to achieve the cooperation surveillance system, two FRs are distributed by navigation messages (GPS and sensor data) using CORBA event-channel communication, while graphical information from IR night vision camera is distributed using CORBA Asynchronous Method Invocation (AMI). The QoS features of AMI in the network are to provide the additional delivery method for distributing an IR camera Images will be evaluate in this experiment. In this paper also presents an empirical performance evaluation from the variable chunk sizes were compared with the number of clients and message latency, some of the measurement data's are summarized in the following paragraph. In the AMI buffers size measurement, when the chuck sizes were change, the message latency is significantly change according to it frame size. The smaller frame size between 256 bytes to 512 bytes is more efficient fur the message size below 2Mbytes, but it average performance in the large of message size a bigger frame size is more efficient. For the several destination, the same experiment using 512 bytes to 2 Mbytes frame with 2 to 5 destinations are presented. For the message size bigger than 2Mbytes, the AMI are still able to meet requirement far more than 5 clients simultaneously.
헤드-아이 보정은 로봇과 같이 이동 가능한 플랫폼상에 장착된 카메라의 방향과 위치를 추정하는 과정이다. 본 논문에서는 다소 제한적인 이동 자유도를 가진 플랫폼에 대해 적용할 수 있는 새로운 헤드-아이 보정 기법을 제시한다. 제안된 보정 기법은 특히 회전 자유도가 없는 선형 플랫폼 위에 장착된 카메라의 상대적인 회전 방향을 구하는데 적용될 수 있다. 서로 다른 두 개의 축 상에서의 순수한 천이(translation) 이동에 의해 얻어진 보정 데이터를 이용하여 회전 방향을 구하는 본 알고리듬은 교정된 스테레오 영상은 epipolar 조건을 만족시켜야 한다는 성질을 이용하여 유도되었다. 본 논문에서는 플랫폼 좌표계상에서의 카메라의 회전 및 천이 파라미터를 구하는 알고리듬을 제시하고, 모의 및 실제 실험 결과를 통해 본 알고리듬의 유효성을 검증한다.
최근 세계적으로 4차 산업혁명 변화에 대한 교육적 대응의 주요 방향이 인공지능(AI: Artificial Intelligence)과 로봇 중심의 미래산업 핵심기술 인재육성에 집중됨에 따라, 고등교육과 직업능력개발 분야에서도 인공지능 기술을 가진 융합적 인재 양성의 중요성이 강조되고 있다. 본 연구는 이와 같이 변화하는 환경을 고려하여 최근 맞춤형 교육훈련 흐름과 AI 융합형 인재 양성 교육을 실현하기 위해 "학습자 맞춤형 AI 융합형 인재양성" 훈련 프로그램을 기획하고 운영모델 방안을 수립하였다. 인공지능 및 교육혁신 전문가를 대상으로 총 2회차에 걸쳐 델파이 조사를 실시하여, 훈련프로그램 운영모델 기본구조, 교육과정, 운영전략의 하위 구성요소의 적합도를 검증하였다. 그리고 최종적으로 검증된 훈련 모델을 온라인 직업훈련 허브인 스마트 직업훈련 플랫폼(STEP)에 적용하여 AI 융합인재 양성 학습자 맞춤형 훈련모델 수립 방안을 제안하였다.
본 논문의 내용은 기존의 차륜식 로봇과는 차별화된 전-방향 구동이 가능한 모듈 개발을 통하여, 기존 모듈의 이동로봇이 가지는 단점인 측면주행성능 저하, 단순 작업주행 경로, 회전-직진 반복 주행으로 인한 불필요한 주행소요시간의 증대 등의 단점을 극복할 수 있을 것이다. 볼-벨런싱 로봇을 구동하기 위한 전-방향 구형휠 구동모듈은 3개의 로터캐스터를 이용한 로봇의 전-방향으로 구동하기 위한 동력전달 메커니즘과 주행을 위한 알고리즘 개발이 요구된다. 3DoF(축) 전-방향 이동 알고리즘이 내장된 드라이버가 모듈에 내장되고, 주행 방향 및 속도를 위한 3DoF(축)의 구동 모터 모듈이 장착된다. 이동 메커니즘으로는 각 구동바퀴의 회전 벡터 합에 따른다. 두 개 또는 세 개의 구동바퀴의 회전과 벡터 합에 따른 다양한 이동방향을 만들어 낼 수 있다. 각 구동바퀴의 회전 벡터장의 여하에 따라 다른 방향으로도 이동이 가능하다. 전-방향 이동을 위한 보다 혁신적인 전-방향 구형휠 구동모듈이 개발되면, 이동로봇의 구동부에 사용되어 로봇의 성능을 기술적으로 좀 더 향상시킬 수 있으며, 구동모듈이 적용된 전-방향로봇 플랫폼을 통하여 기존 차륜식 로봇의 경우 각종 환경에 대한 저항성으로 인해 연속 직진 성능이 저하되는 단점을 극복할 수 있어서 미주, 유럽과 같은 환경에서 적용될 수 있는 청소로봇, 이동로봇뿐만 아니라 전-방향 주행 기능이 요구되는 안내로봇, 탑승형 로봇, 이동수단 등에 필수적인 기술이 될 것이고 지능형서비스로봇 시장과 미래형 자동차시장의 확대에 기여할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.