• 제목/요약/키워드: Robot Platform

검색결과 414건 처리시간 0.023초

ROS-based control for a robot manipulator with a demonstration of the ball-on-plate task

  • Khan, Khasim A.;Konda, Revanth R.;Ryu, Ji-Chul
    • Advances in robotics research
    • /
    • 제2권2호
    • /
    • pp.113-127
    • /
    • 2018
  • Robotics and automation are rapidly growing in the industries replacing human labor. The idea of robots replacing humans is positively influencing the business thereby increasing its scope of research. This paper discusses the development of an experimental platform controlled by a robotic arm through Robot Operating System (ROS). ROS is an open source platform over an existing operating system providing various types of robots with advanced capabilities from an operating system to low-level control. We aim in this work to control a 7-DOF manipulator arm (Robai Cyton Gamma 300) equipped with an external vision camera system through ROS and demonstrate the task of balancing a ball on a plate-type end effector. In order to perform feedback control of the balancing task, the ball is designed to be tracked using a camera (Sony PlayStation Eye) through a tracking algorithm written in C++ using OpenCV libraries. The joint actuators of the robot are servo motors (Dynamixel) and these motors are directly controlled through a low-level control algorithm. To simplify the control, the system is modeled such that the plate has two-axis linearized motion. The developed system along with the proposed approaches could be used for more complicated tasks requiring more number of joint control as well as for a testbed for students to learn ROS with control theories in robotics.

An Effective Method of Sharing Heterogeneous Components of OPRoS and RTM

  • Salov, Andrey D.;Park, Hong Seong;Han, Soohee;Lee, Dooam
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.755-761
    • /
    • 2014
  • Heterogeneous components have different component models, which prevents such components from sharing the functionalities of other components based on the different models. As one of methods for linking heterogeneous components, this paper suggests a proxy component to construct a bridge between heterogeneous components of OPRoS (Open Platform for Robotic Service) and RTM (Robot Technology Middleware). The proxy component consists of two types of components called Adaptor and Interceptor, via which the heterogeneous components can exchange data and services easily. The proposed method enables adaptor and interceptor components to directly invoke the services of the latter and the former, respectively, in order to exchange data and services on a real-time basis. The proxy component can be implemented for OPRoS and RT (Robot Technology) component models to connect with RT and OPRoS ones, respectively. It is shown through a simple experiment that the proposed method works well for real-time control.

외벽청소로봇(ROPE RIDE)의 등강 로봇 플랫폼을 위한 로프 모델링 및 검증 (Rope Modeling and Verification for the Robotic Platform of the Wall Cleaning Robot (ROPE RIDE))

  • 유성근;김태균;서명재;김화수;서태원
    • 로봇학회논문지
    • /
    • 제14권3호
    • /
    • pp.191-195
    • /
    • 2019
  • This paper presents a rope modeling and verification for the robotic platform of the wall cleaning robot (ROPE RIDE). ROPE RIDE has the characteristics of climbing up and down using a rope fixed on the roof like traditional workers. In order to perform a stable operation with a wall cleaning robot, it is necessary to estimate the position of the robot in a vertical direction. However, due to the high coefficient of extension and nonlinearity of the climbing rope, it is difficult to predict the behavior of the rope. Thus, in this paper, the mathematical modeling of the rope was carried out through the preliminary experiment. Extensive experiments using different types of rope were used to determine the parameters of the constitutive equation of climbing ropes. The validity of the determined parameters of various ropes was verified through the experiment results.

초미세수술 로봇의 안정적인 원격조작을 위한 제어시스템 설계 (Control System Design for Stable Teleoperation of Supermicrosurgical Robot)

  • 김건욱;델가도 라이마리우스;인용석
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.169-175
    • /
    • 2024
  • In this study, we developed control system for stable teleoperation of supermicrosurgical robot platform. The supermicrosurgical robot platform is designed to perform precise anastomosis with micro vessels ranging from 0.3 mm to 0.7 mm. The robotic assistance could help more precise manipulation then manual surgery with the help of motion scaling and tremor filtering. However, since the robotic system could cause several vulnerabilities, control system for stable teleoperation should be preceded. Therefore, we first designed control system including inverse kinematics solver, clutch error interpolator and finite state machine. The inverse kinematics solver was designed to minimized inertial motion of the manipulator and tested by applying orientational motion. To make robot slowly converges to the leader's orientation when orientational error was occurred during clutch, the SLERP was used to interpolate the error. Since synchronized behavior of two manipulators and independent behavior of manipulator both exist, two layered finite state machines were designed. Finally, the control system was evaluated by experiment and showed intended behavior, while maintaining low pose error.

농업용 무한궤도형 자율주행 플랫폼의 경로 추종 및 추종 성능 향상을 위한 가변형 전방 주시거리 알고리즘 개발 (Development of Path Tracking Algorithm and Variable Look Ahead Distance Algorithm to Improve the Path-Following Performance of Autonomous Tracked Platform for Agriculture)

  • 이규호;김봉상;최효혁;문희창
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.142-151
    • /
    • 2022
  • With the advent of the 4th industrial revolution, autonomous driving technology is being commercialized in various industries. However, research on autonomous driving so far has focused on platforms with wheel-type platform. Research on a tracked platform is at a relatively inadequate step. Since the tracked platform has a different driving and steering method from the wheel-type platform, the existing research cannot be applied as it is. Therefore, a path-tracking algorithm suitable for a tracked platform is required. In this paper, we studied a path-tracking algorithm for a tracked platform based on a GPS sensor. The existing Pure Pursuit algorithm was applied in consideration of the characteristics of the tracked platform. And to compensate for "Cutting Corner", which is a disadvantage of the existing Pure Pursuit algorithm, an algorithm that changes the LAD according to the curvature of the path was developed. In the existing pure pursuit algorithm that used a tracked platform to drive a path including a right-angle turn, the RMS path error in the straight section was 0.1034 m and the RMS error in the turning section was measured to be 0.2787 m. On the other hand, in the variable LAD algorithm, the RMS path error in the straight section was 0.0987 m, and the RMS path error in the turning section was measured to be 0.1396 m. In the turning section, the RMS path error was reduced by 48.8971%. The validity of the algorithm was verified by measuring the path error by tracking the path using a tracked robot platform.

골절 수술용 엑스레이 투과 원격조종 스튜어트 플랫폼의 설계 및 제어 (Design and Control of X-ray Permeable Teleoperated Stewart Platform for Fracture Surgery)

  • 유병준;김혜미;이성학;임순호;박태곤;이치범
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.660-666
    • /
    • 2015
  • To avoid radiation exposure from repeated x-rays taken during orthopedic surgery, an x-ray permeable teleoperated Stewart platform for orthopedic fracture surgery was developed. This system is composed of a user interface device and a teleoperated operational robot, both of which use a Stewart platform mechanism. The links of the operational robot are made from an x-ray permeable material, polycarbonate, to minimize the interference. The forward and inverse kinematics algorithm applied and the structural reliability were both verified through an analysis using commercial engineering software. To monitor the operating status in real time and stop the device during an emergency, a monitoring software was developed. The performance of the x-ray permeable teleoperated Steward platform was validated experimentally.

회전과 뒤집기 방식의 계단등반 로봇의 역동역학 모델링 (Inverse Dynamic Modeling of a Stair-Climbing Robotic Platform with Flip Locomotion)

  • 최재능;정경민;서태원
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.654-661
    • /
    • 2015
  • Stairs are the most popular obstacles in buildings and factories. To enlarge the application areas of a field robotic platform, stair-climbing is very important mission. One important reason why a stair-climbing is difficult is that stairs are various in sizes. To achieve autonomous climbing of various-sized stairs, dynamic modeling is essential. In this research, an inverse dynamic modeling is performed to enable an autonomous stair climbing. Stair-climbing robotic platform with flip locomotion, named FilpBot, is analyzed. The FlipBot platform has advantages of robust stair-climbing of various sizes with constant speed, but the autonomous operation is not yet capable. Based on external constraints and the postures of the robot, inverse dynamic models are derived. The models are switched by the constraints and postures to analyze the continuous motion during stair-climbing. The constraints are changed according to the stair size, therefore the analysis results are different each other. The results of the inverse dynamic modeling are going to be used in motor design and autonomous control of the robotic platform.

로봇환경플랫폼을 위한 직비 기반의 고성능 센서노드 구현 (Implementation of a ZigBee-based High Performance Sensor Node for the Robot Environment Platform)

  • 김기민;이경중;김재오;문찬우;안현식
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.69-75
    • /
    • 2010
  • 환경 플랫폼에서 로봇이 주변 환경과 효과적으로 결합되어 주어진 임무를 수행하기 위해서는 로봇의 위치화(Localizatioin) 및 내비게이션(Navigation) 기능이 필수적이다. 본 논문에서는 우선, 로봇 플랫폼용 고성능 센서 노드로 이루어진 무선 네트워크를 구성하여 다양한 센서 데이터의 고속 연산 및 전송이 가능하도록 하고 특히, 로봇의 위치화 기능을 구현한다. 저비용, 저전력 특징의 직비(ZigBee) 기반 센서 노드를 32 비트급 마이크로컨트롤러 중심으로 구성함으로써 다양한 센서 데이터의 실시간 처리 및 로봇 위치화 성능을 향상시킨다. Atmel사의 RUM(Router Under MAC)을 이용하여 32 비트급 직비 스택을 개발하고 이를 활용함으로써 고속의 센서 데이터 처리 및 위치화 기능이 가능한 고성능 센서노드를 구현하고 실제 실험을 통하여 성능을 확인한다.

무선인터넷 플랫폼을 이용한 지능형 홈서비스 로봇의 구현 (Implementation of Intelligent Home Service Robot Using Wireless Internet Platform)

  • 김진환;김동규;손기영;신동석
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.201-205
    • /
    • 2007
  • 본 논문은 휴대폰의 무선 인터넷 플랫폼 어플리케이션을 통해 화재 및 가스누출 등 각종 위험을 통보해 주는 지능형 홈서비스 로봇을 구현하였다. 지능형 홈서비스 로봇은 세 가지 구성요소(로봇부, 미들웨어부, 모바일부)로 이루어진다. 로봇부는 가스센서, 불꽃 감지센서, 연기 센서, 초음파 센서, 모터, 카메라, 블루투스 모듈로 구성되며, 각종 위급 상항을 감지한다. 미들웨어부는 미들웨어 어플리케이션을 통해 로봇부와 모바일부를 연결하고, 로봇을 모니터링하며 SMS모듈을 이용하여 응급상황을 통지한다. 모바일부는 TCP/IP 프로토콜을 이용하여 미들웨어부와 통신하며 로봇에 각종 명령을 내려주고 행동을 제어한다. 제안된 방식은 Atmega128 프로세서를 통하여 로봇부의 각종 센서를 제어하며, 모바일부는 WIPI 플랫폼 기반으로 개발하였다. 로봇부와 미들웨어부는 가정에 설치되며 외부에서 모바일부를 통하여 제어된다.

  • PDF

교사도우미 로봇을 활용한 어학교육 서비스 플랫폼 구축방안 연구 (A Study on the Development of Language Education Service Platform for Teaching Assistance Robots)

  • 유갑상;최종천
    • 디지털융복합연구
    • /
    • 제14권8호
    • /
    • pp.223-232
    • /
    • 2016
  • 본 연구에서는 새로운 교사도우미 로봇에 초점을 맞추어 클라우드 기반의 교육서비스 모델을 연구하여 서버영역에 적용하고, 클라이언트 영역에서는 교사도우미 로봇을 초등학교 교실환경에 적용하여 어학교육 서비스 플랫폼으로 활용하고자 한다. 새로운 사물인터넷(IoT)기술 접목을 통해 쾌적한 스마트 교실환경을 만들고 다양한 미디어에 대한 인터페이스를 지원하도록 한다. 이러한 목적의 달성을 위해 광범위한 선행연구와 사례분석을 통해서 서비스 모델구축에 필요한 기본적인 요구조건을 정리하였다. 임베디드 기반의 영상인식, 음성인식, 자율주행은 물론 디스플레이, 터치스크린, IR센서, GPS, 온습도 센서에 대한 기술을 광범위하게 적용하여 서비스를 완성하도록 한다. 본 연구결과의 가장 핵심적인 시사점은 클라우드 기술을 활용한 최적화된 플랫폼에 로봇러닝 및 IoT, BIM기술 융합을 통한 지능형로봇기반의 스마트 교실구축 가능성 제시에 있다고 본다.