• Title/Summary/Keyword: Robot Operation System

Search Result 400, Processing Time 0.029 seconds

The wing structure modeling of the bioinspired aerial robot (생체모방 공중로봇의 날개 구조 모델링)

  • Choi, Youn-Ho;Cho, Nae-Soo;Joung, Jung-Eun;Kwon, Woo-Hyen;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.269-274
    • /
    • 2012
  • The research of the biological mimics robot which utilizes the operation of the organism is progressed on the ground, aerial, and underwater robot sector. In the field of flying robot, the research for implementing the wing movement structure of the bird and insect is progressed. The joint structure for the wing movement of the bird is implemented. The operation of the wing is simulated. For this purpose, by using the Matlab/Simulink, the joint structure of the wing is modelled. The joint movement of the wing is tested through the simulation.

A research on man-robot cooperative interaction system

  • Ishii, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.555-557
    • /
    • 1992
  • Recently, realization of an intelligent cooperative interaction system between a man and robot systems is required. In this paper, HyperCard with a voice control is used for above system because of its easy handling and excellent human interfaces. Clicking buttons in the HyperCard by a mouse device or a voice command means controlling each joint of a robot system. Robot teaching operation of grasping a bin and pouring liquid in it into a cup is carried out. This robot teaching method using HyperCard provides a foundation for realizing a user friendly cooperative interaction system.

  • PDF

A Study on the Remote Operation and the Monitoring systems for Automatic Polishing Robot (자동 연마로봇의 원격 조작 및 모니터링 시스템 개발에 관한 연구)

  • 김병수;고석조;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.122-122
    • /
    • 2000
  • Polishing work of a free-curved surface die demands simple and repetitive operations but requires a considerable amount of time for high precision. In out previous study, to reduce the polishing time and solve the problem of the shortage of skilled workers, the automatic polishing system was developed. However, in the polishing process of die, workers have to stay still in factory to monitor the polishing process for a long time in the poor environment. Therefore, this study proposes the remote operation and monitoring system of the automatic polishing robot. The developing system offer worker monitoring functions and teleoperating functions, as following: system state check, manual manipulation mode, automatic mode, manual teaching mode, automatic teaching mode, simulation by virtual manufacturing device. And automatic teaching system is developed to easily obtain a teaching data.

  • PDF

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

A Study on Intelligent Control of Mobile Robot for Human-Robot Cooperative Operation in Manufacturing Process (인간-로봇 상호협력작업을 위한 모바일로봇의 지능제어에 관한 연구)

  • Kim, DuBeum;Bae, HoYoung;Kim, SangHyun;Im, ODeuk;Back, Young-Tae;Han, SungHyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.137-146
    • /
    • 2019
  • This study proposed a new technique to control of mobile robot based on voice command for (Human-Robot Cooperative operation in manufacturing precess). High performance voice recognition and control system was designed In this paper for smart factory. robust voice recognition is essential for a robot to communicate with people. One of the main problems with voice recognition robots is that robots inevitably effects real environment including with noises. The noise is captured with strong power by the microphones, because the noise sources are closed to the microphones. The signal-to-noise ratio of input voice becomes quite low. However, it is possible to estimate the noise by using information on the robot's own motions and postures, because a type of motion/gesture produces almost the same pattern of noise every time it is performed. In this paper, we describe an robust voice recognition system which can robustly recognize voice by adults and students in noisy environments. It is illustrated by experiments the voice recognition performance of mobile robot placed in a real noisy environment.

Robot assisted THA surgery using gauge based registration (게이지 정합 방법을 이용한 소형 인공고관절 수술로봇의 개발)

  • Shin, Ho-Chul;Park, Young-Bae;Yoon, Yong-San;Kwon, Dong-Soo;Lee, Jung-Ju;Won, Chung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.482-484
    • /
    • 2001
  • In orthopedics, hip arthroplasty is the operation that replaces damaged hip joint to artificial joint. In hip arthroplasty, quite better result can be achieved if robot is applied to machine cavity in bone, especially when cementless stem is used. So several kinds of robots were introduced for hip arthroplasty, but they used MRI, CT Scan, vision analysis and real time tracking of bone position for registration of robot. To overcome shortage of conventional robot surgery, gauge based registration method was proposed and small robot was designed. In this method, small robot is mounted on femur, and its position is determined by gauge registration method. Operation procedure was performed on model femur and result was analyzed. This robotic hip surgery system is expected to more adaptable in operation room.

  • PDF

Development of robot control system using DSP (DSP를 이용한 로보트 제어시스템 개발)

  • Lee, Bo-Hee;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.50-57
    • /
    • 1995
  • In this paper, the design and the implementation of the controller for an articulate robot, which is developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies structures by the time-division control with TMS320C31 DSP chip. The method of control is based on the fuzzy-compensated PID control with scale factor, which compensates for the influence of load variation resulting from the various postures of the robot with conventional PID scheme. The application of the proposed controller to the robot system with DC servo-motors shows some excellent control capabilities. Also, the response characteristics of system for the various trajectory commands verify the superiority of the controller.

  • PDF

A Study on the Map-Building of a Cleaning Robot Base upon the Optimal Cost Function (청소로봇의 최적비용함수를 고려한 지도 작성에 관한 연구)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.39-45
    • /
    • 2009
  • In this paper we present a cleaning robot system for an autonomous mobile robot. Our robot performs goal reaching tasks into unknown indoor environments by using sensor fusion. The robot's operation objective is to clean floor or any other applicable surface and to build a map of the surrounding environment for some further purpose such as finding the shortest path available. Using its cleaning robot system for an autonomous mobile robot can move in various modes and perform dexterous tasks. Performance of the cleaning robot system is better than a fixed base redundant robot in avoiding singularity and obstacle. Sensor fusion using the clean robot improves the performance of the robot with redundant freedom in workspace and Map-Building. In this paper, Map-building of the cleaning robot has been studied using sensor fusion. A sequence of this alternating task execution scheme enables the clean robot to execute various tasks efficiently. The proposed algorithm is experimentally verified and discussed with a cleaning robot, KCCR.

A Study on the Development of Underwater Robot Control System for Autonomous Grasping (자율 파지를 위한 수중 로봇 제어 시스템 구축에 관한 연구)

  • Lee, Yoongeon;Lee, Yeongjun;Chae, Junbo;Choi, Hyun-Taek;Yeu, Taekyeong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • This paper presents a control and operation system for a remotely operated vehicle (ROV). The ROV used in the study was equipped with a manipulator and is being developed for underwater exploration and autonomous underwater working. Precision position and attitude control ability is essential for underwater operation using a manipulator. For propulsion, the ROV is equipped with eight thrusters, the number of those are more than six degrees-of-freedom. Four of them are in charge of surge, sway, and yaw motion, and the other four are responsible for heave, roll, and pitch motion. Therefore, it is more efficient to integrate the management of the thrusters rather than control them individually. In this paper, a thrust allocation method for thruster management is presented, and the design of a feedback controller using sensor data is described. The software for the ROV operation consists of a robot operating system that can efficiently process data between multiple hardware platforms. Through experimental analysis, the validity of the control system performance was verified.

Development of Coating Robot Automation System Based on OLP for Radiators in PPS (페키지형 발전시스템용 라디에이터의 OLP 기반 코팅로봇 자동화시스템 개발)

  • Kim, Seon-Jin;Lee, Jong-Hwan;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.585-591
    • /
    • 2013
  • A robot automation system for coating uniformly a big radiator used in PPS(Packaged Power Station), which consists of 6-axis robot with spray gun, travelling vehicle, supply device of coating paint and thinner with pressured air, HMI controller and robot path OLP(Off-Line Programming), was developed. Experimental results on an optimum operation condition show that a coating thickness is $43{\mu}m$, which is satisfied to a design reference of $25-100{\mu}m$. A productivity of the developed coating robot automation system based on OLP is about 12.6 times of that of manual operation.