• 제목/요약/키워드: Robot Navigation

검색결과 821건 처리시간 0.029초

Mobile Robot Destination Generation by Tracking a Remote Controller Using a Vision-aided Inertial Navigation Algorithm

  • Dang, Quoc Khanh;Suh, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.613-620
    • /
    • 2013
  • A new remote control algorithm for a mobile robot is proposed, where a remote controller consists of a camera and inertial sensors. Initially the relative position and orientation of a robot is estimated by capturing four circle landmarks on the plate of the robot. When the remote controller moves to point to the destination, the camera pointing trajectory is estimated using an inertial navigation algorithm. The destination is transmitted wirelessly to the robot and then the robot is controlled to move to the destination. A quick movement of the remote controller is possible since the destination is estimated using inertial sensors. Also unlike the vision only control, the robot can be out of camera's range of view.

일반화된 보로노이 다이어그램을 이용한 논홀로노믹 모바일 로봇의 자율 주행 (Autonomous Navigation of Nonholonomic Mobile Robots Using Generalized Voronoi Diagrams)

  • 소명뢰;신동익;신규식
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.98-102
    • /
    • 2015
  • This paper proposes an autonomous navigation method for a nonholonomic mobile robot, based on the generalized Voronoi diagram (GVD). We define the look-ahead point for a given motion constraint to determine the direction of motion, which solves the problem of a minimum turning radius for the real nonholonomic mobile robot. This method can be used to direct the robot to explore an unknown environment and construct smooth feedback curves for the nonholonomic robot. As the trajectories can be smoothed, the position of the robot can be stabilized in the plane. The simulation results are presented to verify the performance of the proposed methods for the nonholonomic mobile robot. Furthermore, this approach is worth drawing on the experience of any other mobile robots.

모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발 (Development of Map Building Algorithm for Mobile Robot by Using RFID)

  • 김시습;선정안;기창두
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.

추가적 확장 칼만 필터를 이용한 불규칙적인 바닥에서 자율 이동 로봇의 효율적인 SLAM (An Effective SLAM for Autonomous Mobile Robot Navigation in Irregular Surface using Redundant Extended Kalman Filter)

  • 박재용;최정원;이석규;박주현
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.218-224
    • /
    • 2009
  • This paper proposes an effective SLAM based on redundant extended Kalman filter for robot navigation in an irregular surface to enhance the accuracy of robot's pose. To establish an accurate model of a caterpillar type robot is very difficult due to the mechanical complexity of the system which results in highly nonlinear behavior. In addition, for robot navigation on an irregular surface, its control suffers from the uncertain pose of the robot heading closely related to the condition of the floor. We show how this problem can be overcome by the proposed approach based on redundant extended Kalman filter through some computer simulation results.

이동로봇의 GPS위치 정보 보정을 위한 파티클 필터 방법 (Particle filter for Correction of GPS location data of a mobile robot)

  • 노성우;김태균;고낙용;배영철
    • 한국전자통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.381-389
    • /
    • 2012
  • 본 논문은 실외환경에서 이동하는 자율주행로봇의 위치추정 문제를 다룬다. 위성 GPS정보와 IMU센서 정보를 보정하여 로봇의 위치를 확률적으로 추정하는 MCL방법을 제안한다. MCL 방법은 로봇의 위치 예측 과정과 센서 정보에 의해 예측된 위치를 보정하는 과정으로 구성된다. 위치 예측을 위해 필요한 모션모델은 이동 로봇이 구동시의 직진 오차와 회전 오차를 포함한다. 보정은 신뢰도 값에 기반한 리샘플링에 의해 이루어진다. 신뢰도 값은 사용된 GPS와 IMU의 센서 모델에 의해 구해진다. 센서 모델을 구하기 위하여 GPS의 오차 범위를 반복 실험을 통해 구하였다. GPS는 로봇의 위치 추정을 위해 사용되며 IMU는 로봇의 이동 방향을 추정하기 위해 사용된다. 본 논문에서 제안한 방법을 실외환경에서의 이동로봇 위치 추정에 적용하였고, 실험결과를 분석하여 제안한 방법을 유효성을 보였다.

엘리베이터를 통한 층간 이동이 가능한 실내 자율주행 로봇용 센서 시스템 (Sensor System for Autonomous Mobile Robot Capable of Floor-to-floor Self-navigation by Taking On/off an Elevator)

  • 이민호;나건우;한승오
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.118-123
    • /
    • 2023
  • This study presents sensor system for autonomous mobile robot capable of floor-to-floor self-navigation. The robot was modified using the Turtlebot3 hardware platform and ROS2 (robot operating system 2). The robot utilized the Navigation2 package to estimate and calibrate the moving path acquiring a map with SLAM (simultaneous localization and mapping). For elevator boarding, ultrasonic sensor data and threshold distance are compared to determine whether the elevator door is open. The current floor information of the elevator is determined using image processing results of the ceiling-fixed camera capturing the elevator LCD (liquid crystal display)/LED (light emitting diode). To realize seamless communication at any spot in the building, the LoRa (long-range) communication module was installed on the self-navigating autonomous mobile robot to support the robot in deciding if the elevator door is open, when to get off the elevator, and how to reach at the destination.

상하지가 연동된 보행재활 로봇의 제어 및 VR 네비게이션 (Control and VR Navigation of a Gait Rehabilitation Robot with Upper and Lower Limbs Connections)

  • 본단 노반디;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.315-322
    • /
    • 2009
  • This paper explains a control and navigation algorithm of a 6-DOF gait rehabilitation robot, which can allow a patient to navigate in virtual reality (VR) by upper and lower limbs interactions. In gait rehabilitation robots, one of the important concerns is not only to follow the robot motions passively, but also to allow the patient to walk by his/her intention. Thus, this robot allows automatic walking velocity update by estimating interaction torques between the human and the upper limb device, and synchronizing the upper limb device to the lower limb device. In addition, the upper limb device acts as a user-friendly input device for navigating in virtual reality. By pushing the switches located at the right and left handles of the upper limb device, a patient is able to do turning motions during navigation in virtual reality. Through experimental results of a healthy subject, we showed that rehabilitation training can be more effectively combined to virtual environments with upper and lower limb connections. The suggested navigation scheme for gait rehabilitation robot will allow various and effective rehabilitation training modes.

베지어 곡선을 이용한 로봇 축구 항법의 개선 (An Improvement of Navigation in Robot Soccer using Bezier Curve)

  • 정태영;이귀형
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.696-702
    • /
    • 2015
  • This paper suggests a new method for making a navigation path by using Bezier curve in order to improve the navigation performance used to avoid obstacles during a robot soccer game. We analyzed the advantages and disadvantages of both vector-field and limit-cycle navigation methods, which are the mostly widely used navigation methods for avoiding obstacles. To improve the disadvantages of these methods, we propose a new design technique for generating a more proper path using Bezier curve and describe its advantages. Using computer simulations and experiments, we compare the performance of vector-field navigation with that of Bezier curve navigation. The results prove that the navigation performance using Bezier curve is relatively superior to the other method.

단안 카메라를 이용한 수중 정밀 항법을 위한 모델 기반 포즈 추정 (Model-Based Pose Estimation for High-Precise Underwater Navigation Using Monocular Vision)

  • 박지성;김진환
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.226-234
    • /
    • 2016
  • In this study, a model-referenced underwater navigation algorithm is proposed for high-precise underwater navigation using monocular vision near underwater structures. The main idea of this navigation algorithm is that a 3D model-based pose estimation is combined with the inertial navigation using an extended Kalman filter (EKF). The spatial information obtained from the navigation algorithm is utilized for enabling the underwater robot to navigate near underwater structures whose geometric models are known a priori. For investigating the performance of the proposed approach the model-referenced navigation algorithm was applied to an underwater robot and a set of experiments was carried out in a water tank.

Mobile Robot Navigation using Optimized Fuzzy Controller by Genetic Algorithm

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권1호
    • /
    • pp.12-19
    • /
    • 2015
  • In order to guide the robots move along a collision-free path efficiently and reach the goal position quickly in the unknown multi-obstacle environment, this paper presented the navigation problem of a wheel mobile robot based on proximity sensors by fuzzy logic controller. Then a genetic algorithm was applied to optimize the membership function of input and output variables and the rule base of the fuzzy controller. Here the environment is unknown for the robot and contains various types of obstacles. The robot should detect the surrounding information by its own sensors only. For the special condition of path deadlock problem, a wall following method named angle compensation method was also developed here. The simulation results showed a good performance for navigation problem of mobile robots.