• Title/Summary/Keyword: Robot Navigation

Search Result 824, Processing Time 0.032 seconds

Intelligent System based on Command Fusion and Fuzzy Logic Approaches - Application to mobile robot navigation (명령융합과 퍼지기반의 지능형 시스템-이동로봇주행적용)

  • Jin, Taeseok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1034-1041
    • /
    • 2014
  • This paper propose a fuzzy inference model for obstacle avoidance for a mobile robot with an active camera, which is intelligently searching the goal location in unknown environments using command fusion, based on situational command using an vision sensor. Instead of using "physical sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data. In this paper, "command fusion" method is used to govern the robot motions. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. We describe experimental results obtained with the proposed method that demonstrate successful navigation using real vision data.

The navigation method of mobile robot using a omni-directional position detection system (전방향 위치검출 시스템을 이용한 이동로봇의 주행방법)

  • Ryu, Ji-Hyoung;Kim, Jee-Hong;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.237-242
    • /
    • 2009
  • Comparing with fixed-type Robots, Mobile Robots have the advantage of extending their workspaces. But this advantage need some sensors to detect mobile robot's position and find their goal point. This article describe the navigation teaching method of mobile robot using omni-directional position detection system. This system offers the brief position data to a processor with simple devices. In other words, when user points a goal point, this system revise the error by comparing its heading angle and position with the goal. For these processes, this system use a conic mirror and a single camera. As a result, this system reduce the image processing time to search the target for mobile robot navigation ordered by user.

The Performance Analysis of Integrated Navigation System Based on the Tactical Communication and VISION for the Accurate Localization of Unmanned Robot (무인로봇 정밀위치추정을 위한 전술통신 및 영상 기반의 통합항법 성능 분석)

  • Choi, Ji-Hoon;Park, Yong-Woon;Song, Jae-Bok;Kweon, In-So
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.271-280
    • /
    • 2011
  • This paper presents a navigation system based on the tactical communication and vision system in outdoor environments which is applied to unmanned robot for perimeter surveillance operations. GPS errors of robot are compensated by the reference station of C2(command and control) vehicle and WiBro(Wireless Broadband) is used for the communication between two systems. In the outdoor environments, GPS signals can be easily blocked due to trees and buildings. In this environments, however, vision system is very efficient because there are many features. With the feature MAP around the operation environments, the robot can estimate the position by the image matching and pose estimation. In the navigation system, thus, operation modes is switched by navigation manager according to some environment conditions. The experimental results show that the unmanned robot can estimate the position very accurately in outdoor environment.

Navigation of a Mobile Robot Using Hand Gesture Recognition (손 동작 인식을 이용한 이동로봇의 주행)

  • Kim, Il-Myeong;Kim, Wan-Cheol;Yun, Gyeong-Sik;Lee, Jang-Myeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.599-606
    • /
    • 2002
  • A new method to govern the navigation of a mobile robot using hand gesture recognition is proposed based on the following two procedures. One is to achieve vision information by using a 2-DOF camera as a communicating medium between a man and a mobile robot and the other is to analyze and to control the mobile robot according to the recognized hand gesture commands. In the previous researches, mobile robots are passively to move through landmarks, beacons, etc. In this paper, to incorporate various changes of situation, a new control system that manages the dynamical navigation of mobile robot is proposed. Moreover, without any generally used expensive equipments or complex algorithms for hand gesture recognition, a reliable hand gesture recognition system is efficiently implemented to convey the human commands to the mobile robot with a few constraints.

Intelligent Navigation of a Mobile Robot in Dynamic Environments (동적환경에서 이동로봇의 지능적 운행)

  • Heo, Hwa-Ra;Park, Jae-Han;Park, Seong-Hyeon;Park, Jin-U;Lee, Jang-Myeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.16-28
    • /
    • 2000
  • In this paper, we propose a navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using an ultrasonic sensor. Instead of using "sensor fusion"method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion"method is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we peformed simulations in PC as well as real experiments with ZIRO. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

  • PDF

Simultaneous Localization and Mobile Robot Navigation using a Sensor Network

  • Jin Tae-Seok;Bashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • Localization of mobile agent within a sensing network is a fundamental requirement for many applications, using networked navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, This paper describes a networked sensor-based navigation method in an indoor environment for an autonomous mobile robot which can navigate and avoid obstacle. In this method, the self-localization of the robot is done with a model-based vision system using networked sensors, and nonstop navigation is realized by a Kalman filter-based STSF(Space and Time Sensor Fusion) method. Stationary obstacles and moving obstacles are avoided with networked sensor data such as CCD camera and sonar ring. We will report on experiments in a hallway using the Pioneer-DX robot. In addition to that, the localization has inevitable uncertainties in the features and in the robot position estimation. Kalman filter scheme is used for the estimation of the mobile robot localization. And Extensive experiments with a robot and a sensor network confirm the validity of the approach.

An method for building 2D virtual environment for a remote controlled mobile robot

  • Kim, Woo-Kyoung;Hyun, Woong-Keun;Park, Jea-Yong;Yoon, In-Mo;Jung, Y.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1430-1434
    • /
    • 2004
  • Recently, Virtual reality parts is applied in various fields of industry. In this paper we developed basic components for virtual robot control system interfaced with real environment. For this, a real robot with virtual interface module is developed and virtual robot of similar image with real robot is created by putting on 3D graphic texture to the real robot. To build an unknown environment to be linked with virtual environment, we proposed a hough transformation based algorithm. Our proposed algorithm consists of navigation module by using fuzzy engine and map building module. Experiments using a developed robot illustrate the method.

  • PDF

Development of an Autonomous Mobile Robot with Functions of Speech Recognition and Collision Avoidance

  • Park, Min-Gyu;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.475-475
    • /
    • 2000
  • This paper describes the construction of an autonomous mobile robot with functions of collision avoidance and speech recognition that is used for teaching path of the robot. The human voice as a teaching method provides more convenient user-interface to mobile robot. For safe navigation, the autonomous mobile robot needs abilities to recognize surrounding environment and avoid collision. We use u1trasonic sensors to obtain the distance from the mobile robot to the various obstacles. By navigation algorithm, the robot forecasts the possibility of collision with obstacles and modifies a path if it detects dangerous obstacles. For these functions, the robot system is composed of four separated control modules, which are a speech recognition module, a servo motor control module, an ultrasonic sensor module, and a main control module. These modules are integrated by CAN(controller area network) in order to provide real-time communication.

  • PDF

Development and Implementation of Functions for Mobile Robot Navigation (이동 로봇의 자율 주행용 함수 개발 및 구현)

  • Jeong, Seok-Ki;Ko, Nak-Yong;Kim, Tae-Gyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.421-432
    • /
    • 2013
  • This paper describes implementation of functions for mobile robot localization, which is one of the vital technologies for autonomous navigation of a mobile robot. There are several function libraries for mobile robot navigation. Some of them have limited applicability for practical use since they can be used only for simulation. Our research focuses on development of functions which can be used for localization of indoor robots. The functions implement deadreckoning and motion model of mobile robots, measurement model of range sensors, and frequently used calculations on angular directions. The functions encompass various types of robots and sensors. Also, various types of uncertainties in robot motion and sensor measurements are implemented so that the user can select proper ones for their use. The functions are tested and verified through simulation and experiments.

A study on INS/GPS implementation of loosely coupled method for localization of mobile robot. (이동로봇의 위치 추정을 위한 약결합 방식의 INS/GPS 구현에 관한 연구)

  • Park, Myung-Hoon;Hong, Seung-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.493-495
    • /
    • 2004
  • In this paper, shows a research in accordance with the design the implementation of the localization system for mobile robot using INS(Inertial Navigation System) and GPS(Global Positioning System). First, a Strapdown Inertial Navigation System : SDINS is designed and implemented for low speed walking robot, by modifying Inertial Navigation System which is widely used for rocket, airplane, ship and so on. In addition, thesis proposes the localization of robot with the method of loosely coupled method by using Kalman Filter with INS/GPS integrated system to utilize assumed position and steed data from GPS.

  • PDF