• Title/Summary/Keyword: Robot Model

Search Result 1,766, Processing Time 0.027 seconds

Analysis of Flow Characteristics of Triple Filter System by the Influence of Filter Density (필터 조밀도의 영향에 의한 3단 필터 시스템의 유동특성 해석)

  • In-Soo Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1163-1169
    • /
    • 2023
  • In this study, the flow characteristics of the filter system were analyzed due to the effect of the density of the filter in the triple filter system. Flow analysis was performed as a flow passing through a porous medium. The flow characteristics of each filter system were analyzed by arranging filters with different densities in the forward flow flow and the reverse flow. The arrangement order of the triple filters was excellent in the case of forward fluid flow and in the case of higher density from the inside to the outside filter. In the reverse flow filter system, the performance of the system was the best in the case of reverse order filter arrangement. As a result of the analysis, Case II, which showed a pressure drop rate of 5.65% for forward flow, was the best in the reverse direction with a pressure drop rate of 14.25%. Considering reverse and forward flows, it was found that the optimal filter arrangement was most effective when the intermediate filter was the densest, and the inner or outer filter was less dense.

Adaptive Skin Color Segmentation in a Single Image using Image Feedback (영상 피드백을 이용한 단일 영상에서의 적응적 피부색 검출)

  • Do, Jun-Hyeong;Kim, Keun-Ho;Kim, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.112-118
    • /
    • 2009
  • Skin color segmentation techniques have been widely utilized for face/hand detection and tracking in many applications such as a diagnosis system using facial information, human-robot interaction, an image retrieval system. In case of a video image, it is common that the skin color model for a target is updated every frame for the robust target tracking against illumination change. As for a single image, however, most of studies employ a fixed skin color model which may result in low detection rate or high false positive errors. In this paper, we propose a novel method for effective skin color segmentation in a single image, which modifies the conditions for skin color segmentation iteratively by the image feedback of segmented skin color region in a given image.

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.

A Study on Identification of Optimal Fuzzy Model Using Genetic Algorithm (유전알고리즘을 이용한 최적 퍼지모델의 동정에 관한연구)

  • 김기열
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2000
  • A identification algorithm that finds optimal fuzzy membership functions and rule base to fuzzy model isproposed and a fuzzy controller is designed to get more accurate position and velocity control of wheeled mobile robot. This procedure that is composed of three steps has its own unique process at each step. The elements of output term set are increased at first step and then the rule base is varied according to increase of the elements. The adjusted system is in competition with system which doesn't include any increased elements. The adjusted system will be removed if the system lost. Otherwise, the control system is replaced with the adjusted system. After finished regulation of output term set and rule base, searching for input membership functions is processed with constraints and fine tuning of output membership functions is done.

  • PDF

Design of Bi-stable Mechanism Using Cylindrical Permanent Magnets (원통형 영구자석을 이용한 쌍안정 장치 설계)

  • Yang, Hyeon-Ho;Choi, Jae-Yong;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.343-354
    • /
    • 2020
  • Bi-stable mechanism is a system that has two different stable equilibrium positions within its range of motion. It has an ability to stay in two different positions without external power input and despite small disturbances. One of the most bi-stable applied mechanism is a morphing system, such as deployable structures, switch systems, and robot grippers. However, due to the complexity of mechanism and limitation of structure configuration, it is difficult to apply on a morphing system with rotating link mechanism. In this paper, an implementation method of rotational bi-stable mechanism using cylindrical permanent magnets is proposed. The magnetic field and the magnetic force were calculated from electromagnet model of the cylindrical permanent magnet. Based on the model, the force relation between two links containing the cylindrical permanent magnets was estimated. An array of cylindrical permanent magnets was selected for symmetric bi-stability, and an experiment on the link structure with the proposed bi-stable mechanism was performed to investigate the stability against a external torque.

The Educational Program Development of Creativity in Science-Technology-Society for Gifted and Talented Children based on GENEPLORE Creative Thinking Process and Theory of Knowledge Development (GENEPLORE 창의적 사고 과정 모델과 지식발달론에 기초한 영재아 과학-기술-사회(STS) 창의력 교육 프로그램 개발)

  • 전명남
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.74-87
    • /
    • 2003
  • A model of STS (Science-Technology-Society) creativity education program for the gifted and talented children has been developed, based on GENEPLORE thinking process and Knowledge development theory. The GENEPLORE creative thinking process, developed by Finke et al. (1990, 1992), has two phases such as generative phase and exploratory phase. And The knowledge development theories of Piaget (1977) and Gallagher(1981) assume that knowledge-bases are developed on the basis of empirical as well as reflective abstraction, which could imply that knowledge-bases are crucial in creative thinking process. The creativity education model for the gifted and talented of the present study attempted to integrate 'the individual, creative thinking process, and social/scientific technology' by employing topics of the science-technology-society such as computer, network, biotech, robot, e-business, e-education, e-health, nanotech and entertainment and the structure and contents of the program are proposed

  • PDF

Indirect Adaptive Control of Nonlinear Systems Using a EKF Learning Algorithm Based Wavelet Neural Network (확장 칼만 필터 학습 방법 기반 웨이블릿 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Kim Kyoung-Joo;Choi Yoon Ho;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.720-729
    • /
    • 2005
  • In this paper, we design the indirect adaptive controller using Wavelet Neural Network(WNN) for unknown nonlinear systems. The proposed indirect adaptive controller using WNN consists of identification model and controller. Here, the WNN is used in both Identification model and controller The WNN has advantage of indicating the location in both time and frequency simultaneously, and has faster convergence than MLPN and RBFN. There are several training methods for WNN, such as GD, GA, DNA, etc. In this paper, we present the Extended Kalman Filter(EKF) based training method. Although it is computationally complex, this algorithm updates parameters consistent with previous data and usually converges in a few iterations. Finally, ore illustrate the effectiveness of our method through computer simulations for the Buffing system and the one-link rigid robot manipulator. From the simulation results, we show that the indirect adaptive controller using the EKF method has better performance than the GD method.

Lane Detection for Adaptive Control of Autonomous Vehicle (지능형 자동차의 적응형 제어를 위한 차선인식)

  • Kim, Hyeon-Koo;Ju, Yeonghwan;Lee, Jonghun;Park, Yongwan;Jeong, Ho-Yeol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.4
    • /
    • pp.180-189
    • /
    • 2009
  • Currently, most automobile companies are interested in research on intelligent autonomous vehicle. They are mainly focused on driver's intelligent assistant and driver replacement. In order to develop an autonomous vehicle, lateral and longitudinal control is necessary. This paper presents a lateral and longitudinal control system for autonomous vehicle that has only mono-vision camera. For lane detection, we present a new lane detection algorithm using clothoid parabolic road model. The proposed algorithm in compared with three other methods such as virtual line method, gradient method and hough transform method, in terms of lane detection ratio. For adaptive control, we apply a vanishing point estimation to fuzzy control. In order to improve handling and stability of the vehicle, the modeling errors between steering angle and predicted vanishing point are controlled to be minimized. So, we established a fuzzy rule of membership functions of inputs (vanishing point and differential vanishing point) and output (steering angle). For simulation, we developed 1/8 size robot (equipped with mono-vision system) of the actual vehicle and tested it in the athletics track of 400 meter. Through the test, we prove that our proposed method outperforms 98 % in terms of detection rate in normal condition. Compared with virtual line method, gradient method and hough transform method, our method also has good performance in the case of clear, fog and rain weather.

  • PDF

Design and Experimental Evaluation of a Robust Force Controller for a 6-Link Electro-Hydraulic Manipulator via H$_{\infty}$ Control Theory

  • Ahn, Kyoung-Kwan;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.999-1010
    • /
    • 2003
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. This maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulators because hydraulic manipulators have the advantage of electric insulation and power/mass density. Meanwhile an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this paper, the robust force control of a 6-link electro-hydraulic manipulator system used in the real maintenance task of active electric lines is examined in detail. A nominal model for the system is obtained from experimental frequency responses of the system, and the deviation of the manipulator system from the nominal model is derived by a multiplicative uncertainty. Robust disturbance observers for force control are designed using this information in an H$\_$$\infty$/ framework, and implemented on the two different setups. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved even if the stiffness of environment and the shape of wall change.

Development a Model of Smart Phone and Educational Robot for Educational using (스마트폰과 교육용 로봇의 교육적 활용을 위한 프로그래밍 교육 모형 개발)

  • Kim, Se-Min;Moon, Chae-Young;Chung, Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.481-484
    • /
    • 2012
  • Information subject in the revision educational curriculum actually devoted a good deal of space to increase problem-solving ability through programming learning. However, it is not easy for learners to be immersed in the programming teaching by using only computers, which leads to the heavy logical burden in learning. Therefore, many studies are being carried out on the programming teaching by using robots. Moreover, smartphones have been rapidly widespread in the past few years; as a result, the present immersion situation in smartphones and the side effect problems are on the rise. This study tried to develop a programming teaching model to have a significant synergy effect in programming teaching by using robots with the immersion effect in smartphones. This paper attempts to improve programming teaching effectively by introducing the special feature of smartphones: the immersion greatly needed to programming teaching.

  • PDF